
数据分析和产品人员成长的书
问过我这个问题的人太多了,所以统一写篇文章回复下,所写的是看了很多遍的,看书的顺序建议可以按着我给的来。
一、 数据产品经理番外篇:
在看这些书之前,我已经做过一年的产品助理,学习过用户体验、产品设计等知识,并且自己推动过几个版本上线。所以如果你是想要做数据产品经理的人,可以在看下面的数据书之前,先把产品经理的入门书看完。我当年看的是《ued火花集》、《结网》、《人人都是产品经理》,但是那是2010年,所以请酌情参考。
二、 入门篇
1. 入门技术篇:
对于初级员工,需要做的是掌握技术、思路、方法论,并且学习公司的业务知识,可以做出很漂亮、很商务的报告。
谁说菜鸟不会数据分析:
a) 比较经典的入门书,覆盖了一到两年的数据分析人员的大部分工作,包括excel技巧、可视化入门、数据分析方法、数据分析方法论、数据处理入门等,前两遍看的时候,会认真的学习里面的概念和技巧。
b) 每隔一段时间都会翻一遍,会有更深的理解。
这本书基于excel,在工作中,excel是数据人员必须掌握的,所以我还买了两本excel的工具书。Excel的工具书:
a) 这个我当年看的已经很老了,现在要买直接去亚马逊搜评分比较高的就行,都差不多。
深入浅出数据分析、商务统计学(第5版)
a) 这两本书都是讲统计学的,前者比较容易、有趣、浅,都是工作中的例子。
b) 后者比较专业,枯燥,只是比起专业教材来容易。
c) 各看过一遍,后来因为我的工作中用的少,就没看过了。
2. 入门业务篇:
各数据产品论坛(强烈推荐)
a) 我认为学习和成长最快的方式之一,是去看各个数据软件的帮助和产品论坛,因为这些都是写给他们的客户的,所以通俗易懂,又有案例,又有分析思路,虽然不乏吹牛逼的,但是整体来说,比看书的效果要好。
b) 生意参谋的论坛:
我当时看的是量子恒道的卖家帮助,这是当时的淘宝的流量分析软件,有一个入门课程系列,完整的学完。还有一个好处是我们都是淘宝买家,所以当看到站在淘宝卖家的思维做分析的案例时,我们会比较容易理解。
c) 移动分析这块我个人认为淘宝做的是很不好的,所以可以看看友盟等,最新出的数据分析产品公司包括神策、growingio,官网上的文章也都很系统,写的很不错,集合了最近几年最新的行业智慧,非常推荐。
网站分析实战:如何以数据驱动决策,提升网站价值
a) 这本书也比较推荐,对了解用户在网站上的行为,并如何做分析,都有一定的作用。
b) 不好的有两点:1、比较偏pc,而现在大部分公司的重点都转向了移动。2、有一些内容即使我看的时候,都觉得有点过时(2013年),因为国内当时的互联网已经表现出了很大的先进性,包括商业模式的创新等,但是这本书太过于经典的数据分析,即学习了GA的那套,对于国内的商业模式有点落后。
c) 不过经典就是经典,还是要看的。
精益数据分析:
a) 在上本书的基础上进阶,讲了不同的公司怎么样用数据搭建分析框架。我觉得这本书比较好的是,它能够讲不同的指标运用到现实时,会碰到什么困难,以及如何解决。
b) 可惜我2016年9月才读这本书,思维深度已经超过它了,所以觉得收获不大。但是对于工作一两年的人,感觉是非常有用的。
三、 高级篇:
1. 概述:
当你进入高级的时候,这个时候看书已经很之前有了很大的变化:1、 并不是看单本书,而是学会快速的看书,因为每本书中可能只有几个模型或者几个点对你有借鉴,那么只精读那几处,速读其他部分。
2、 要有自己的理论框架,也就是学会业务建模;
3、 要看业务书,并且能够把业务书的知识,固化成可以量化、可以监控的数据模型,和流程模型;这个是高级别很重要的一点,因为要能够快速的切入一个领域,并且能够用数据找到可以优化的办法。
4、 每个人看的都不一样。所以我看的书纯粹是个人建议。
2. 用户和整体框架:
增长黑客:创业公司的用户与收入增长秘籍。对于一个公司来说,能够把数据化管理推行下去,就能把公司的整个管理水平提升一大截,也是数据部门对公司的贡献之一。
3. 商品管理的书:
品类管理:教你如何进行商品梳理:定位、重新定位:必看。
4. 大数据:
决战大数据(升级版):大数据的关键思考为数据而生:大数据创新实践:写的比较好,我还专门写了好几天的读书笔记。
5. 供应链:
供应链管理:高成本、高库存、重资产的解决方案,刘宝红后来我上知乎把相关帖子看了一遍,看明白了。所以相关问题还是看知乎比较参与感、爆品战略:这两本书中大部分都是小米的案例。讲的挺好的,看一本就可以了。
6. 专业书:
这些比较专业,是每个产品的入门书,但是也仅限于入门。实际中的情况太复杂,就不是这篇文章能覆盖的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14