
大数据与农业电商融合8个关键点
目前我国大数据产业还处于发展初期,2012年仅为4.5亿元,主导厂商以外企居多,2015年我国大数据应用的市场规模预计1500亿元,2020年将达到8000亿元。农业大数据产业发展面临的现实挑战值得认真分析和对待。需要不断地探索并创新模式,将农业大数据与农业电商相融合应注意8个关键点。
1.大数据采集
建立健全农业大数据采集制度,明确信息采集责任。要广泛采用分布式高速、高可靠数据爬取或采集高速数据全映像等大数据收集技术,广泛收集互联网数据。进一步优化涉农数据监测统计系统,完善统计指标,扩大采集监测范围,改进采集监测手段和方式,探索开展统计监测由抽样调查逐步向全样本、全数据过渡试点,完善信息进村入户村级站的数据采集功能,完善相关数据采集共享功能。
2.大数据分析
建设国家级、省级的农业大数据交换中心,依托云计算技术,通过基础软硬件资源整合和架构重建,实现资源的统一管理、按需分配、综合利用。形成上下联动、覆盖全面的农产品大数据共享平台,实现数据的互联互通、开放获取、快速访问。
3.大数据应用
逐步开展农业智能化行动,利用大数据技术提升农业生产、经营、管理和服务水平,培育一批网络化、智能化、精细化的现代“种养加”生态农业新模式,加快完善新型农业生产经营体系,培育多样化农业互联网管理服务模式,逐步建立农副产品、农资质量安全追溯体系。定期发布监测预报预警,避免问题农产品“断头案”现象频发。
4.大数据运营
完善大数据的服务体系建设,以龙头企业、合作经济组织、标准化生产基地、农业科技示范园区、种养大户、农产品网站为依托,实现对农产品产供销的“一站式”服务。加强农民专业合作组织和种养大户等自身信息服务体系建设,形成电视、电话、网络相互结合、互为补充的多模式信息传播。加强与联通、移动、电信、广播电视等部门的沟通合作,整合分布在不同地点、使用多个服务号码、由不同专家团队支撑的各类为农服务平台资源,建设集热线电话、手机短信、涉农网站、广播电视、APP技术等于一体、多功能并举、覆盖全省的12316“三农”信息服务系统。
5.大数据管理
建立和完善国家级和省农业大数据交换中心平台管理制度,包括应用准入、应用卸载、沙箱开发、安全事故、违规处罚等;建立平台运行制度,依据国家信息安全有关法律法规,对所有农业信息根据职务、服务对象和服务内容进行分级管理,建立和完善平台安全保密制度。
6.大数据标准
重点围绕基础数据、数据处理、数据安全、数据质量、数据产品和平台标准、数据应用和数据服务六大类,建立标准体系,并从元数据、数据库、数据建模、数据交换与管理等领域,推动相关标准的研制与应用。
7.大数据示范
围绕精准农业、物联网应用、产品质量安全追溯、农产品线上营销等开展试点示范,积极探索农业大数据技术在农业领域集成应用、农产品高标准生产、优质品牌开发和产品网上销售等新途径、新模式。
8.大数据人才培养
充分发挥高等院校、高新企业、电商园区的人才优势,引进人才与引进智力相结合,促进我国农业大数据运用的档次和水平,选派年轻的农业干部进行进修、培训,促进农业系统的人才和知识的更新,提高应用能力和水平。利用农村实用人才、新型职业农民培训等现有培训项目资源,加大培训力度,推广普及农业大数据知识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29