京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与农业电商融合8个关键点
目前我国大数据产业还处于发展初期,2012年仅为4.5亿元,主导厂商以外企居多,2015年我国大数据应用的市场规模预计1500亿元,2020年将达到8000亿元。农业大数据产业发展面临的现实挑战值得认真分析和对待。需要不断地探索并创新模式,将农业大数据与农业电商相融合应注意8个关键点。

1.大数据采集
建立健全农业大数据采集制度,明确信息采集责任。要广泛采用分布式高速、高可靠数据爬取或采集高速数据全映像等大数据收集技术,广泛收集互联网数据。进一步优化涉农数据监测统计系统,完善统计指标,扩大采集监测范围,改进采集监测手段和方式,探索开展统计监测由抽样调查逐步向全样本、全数据过渡试点,完善信息进村入户村级站的数据采集功能,完善相关数据采集共享功能。
2.大数据分析
建设国家级、省级的农业大数据交换中心,依托云计算技术,通过基础软硬件资源整合和架构重建,实现资源的统一管理、按需分配、综合利用。形成上下联动、覆盖全面的农产品大数据共享平台,实现数据的互联互通、开放获取、快速访问。
3.大数据应用
逐步开展农业智能化行动,利用大数据技术提升农业生产、经营、管理和服务水平,培育一批网络化、智能化、精细化的现代“种养加”生态农业新模式,加快完善新型农业生产经营体系,培育多样化农业互联网管理服务模式,逐步建立农副产品、农资质量安全追溯体系。定期发布监测预报预警,避免问题农产品“断头案”现象频发。
4.大数据运营
完善大数据的服务体系建设,以龙头企业、合作经济组织、标准化生产基地、农业科技示范园区、种养大户、农产品网站为依托,实现对农产品产供销的“一站式”服务。加强农民专业合作组织和种养大户等自身信息服务体系建设,形成电视、电话、网络相互结合、互为补充的多模式信息传播。加强与联通、移动、电信、广播电视等部门的沟通合作,整合分布在不同地点、使用多个服务号码、由不同专家团队支撑的各类为农服务平台资源,建设集热线电话、手机短信、涉农网站、广播电视、APP技术等于一体、多功能并举、覆盖全省的12316“三农”信息服务系统。
5.大数据管理
建立和完善国家级和省农业大数据交换中心平台管理制度,包括应用准入、应用卸载、沙箱开发、安全事故、违规处罚等;建立平台运行制度,依据国家信息安全有关法律法规,对所有农业信息根据职务、服务对象和服务内容进行分级管理,建立和完善平台安全保密制度。
6.大数据标准
重点围绕基础数据、数据处理、数据安全、数据质量、数据产品和平台标准、数据应用和数据服务六大类,建立标准体系,并从元数据、数据库、数据建模、数据交换与管理等领域,推动相关标准的研制与应用。
7.大数据示范
围绕精准农业、物联网应用、产品质量安全追溯、农产品线上营销等开展试点示范,积极探索农业大数据技术在农业领域集成应用、农产品高标准生产、优质品牌开发和产品网上销售等新途径、新模式。
8.大数据人才培养
充分发挥高等院校、高新企业、电商园区的人才优势,引进人才与引进智力相结合,促进我国农业大数据运用的档次和水平,选派年轻的农业干部进行进修、培训,促进农业系统的人才和知识的更新,提高应用能力和水平。利用农村实用人才、新型职业农民培训等现有培训项目资源,加大培训力度,推广普及农业大数据知识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01