京公网安备 11010802034615号
经营许可证编号:京B2-20210330
窥尽大数据背后被遮掩起来的财富
当我们在谈大数据的时候,我们在谈论什么?大数据产业火爆的背后,有着深厚的利益驱动性,于是各大商家与企业纷纷趋之若鹜,想要窥尽大数据背后被遮掩起来的财富。毫无疑问,变现,是大数据火爆的背后原因。
大数据被潮流所接受,皆因它能够带来进步与利益
纵观古今,博览中西,能够经历历史的洗刷而留存下来的精粹,都是能经得住各种考验的东西,都是能够真实满足人类各种需求的东西。这些“东西”,要么是从物质上说能给人类带来利益的——如农业、手工业、商贸等;要么是从情感上说能够给人类带来快感的——如绘画、舞蹈、歌曲等。这些东西在几千年的文明史中,除了样式上会有与时俱进的变化,但究其核心,若整体一个产业种类或艺术种类自被催生日起便被存续下来,那一定是满足了人类的需求。那么,大数据是否能够被当前的历史潮流接受,那就是要看它是否能够给我们带来切切实实的利益。
有不少人说,工业革命又将迎来一次变革了,更道大数据产业是第四次工业革命的标志,这个说法虽有待商榷,但是,只要它给人类社会带来生产力进步,以一种更智能新颖的模式代替人类重劳力,促进全社会信息共享和交流,让社会以更高进程地进步,那也未尝不可。
科学技术是第一生产力,踏入工业4.0时代,必有新的主导科学技术——大数据、BI、云计算、物联网、移动互联等新一代信息技术打破了原有的技术壁垒,形成了新型的产业和商业创新模式,促进和刺激了新一轮的生产力发展。
低廉快速,让大数据能成为盈利的工具
说到大数据,我们可以具体、广义地理解成Hadoop、各种数据挖掘、机器学习算法、人工智能。因此,今年也催生出学习以上技能的一股风潮。那么,努力学习是否真有丰厚的回报?答案是肯定的,因为,大数据能成为盈利的工具。
日常操作中,为了缩短计算和统计的时间,为运营与决策提供数据成本更为低廉和具有时效性的方案,我们会采用Hadoop或者Spark这些框架进行分布式计算;为了深埋于数据背后的数据量化后的规律与彼此的逻辑关系,我们使用机器学习算法对数据进行深度的挖掘和处理。
在运营学当中,“消除不确定性来降低试错成本”是一句经过万千实践留下的“金句”。而围绕这一中心思想发展起来的工程技术改进、算法改进、架构优化等,都是大数据变现的核心内容。而商家和企业十分看重的大数据分析,深究其本质,其实和获取信息的本质是一致的——通过消除不确定性来降低试错成本。
做大数据是为了降低成本,增加行业收益
很多人认为,大数据变现只是纸上谈兵,然而,在我们认识到本质之后就不会让人觉得变现这件事很困惑或很艰难。虽然大数据带来的利益并不是我们可以唾手可得的,但是,在比较明确的思路和目标下,在国家的相关政策,以及世界科技的潮流催生下,这也渐渐变成了一种趋势。
很多人误会,做大数据是为大而大,其实,做大数据是为了降低成本而大,这个成本是广义的。在项目启动初期,商家与企业看似花费了很多的金钱在设备购买、工具分析、人才挖掘上,但是未来这些设备上所承载的数据以及从中得到的信息,会大幅削减试错成本,而且在某些行业领域里这种增益的效果还会非常明显。以小见大,事半功倍的事情,何乐而不为?
变现,是大数据火爆背后的根本原因。共享经济时代,越来越多人选择大数据相关行业,例如众包平台、数据分析行业,等等。你的选择又是什么呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20