
大数据分析的新时代宠儿能否不辱使命
提起“零编码”运动,相信很多人都很陌生,对于生活在大数据时代下的人们,必须要了解“零编码”运动,“零编码”运动由比尔·盖茨发起,史蒂芬·乔布斯对其进行了完善。这项运动正逐渐延伸到资本市场。
1979年,在乔布斯参观帕洛阿尔托研究所中,当他看到了命令行界面的指向-点击更换的第一个原型时,便萌生了进入用户友好界面时代的想法:“他们给我展示的第一样品便把我深深地吸引住了,它就是图形式用户界面……仅仅十分钟,我便意识到,在将来,所有的电脑都会以这种方式来工作。”
我们已经习惯于用指尖将含有上百万数据点的虚拟图进行放大查看,用系统把相关信息用阶段和层次来展现,正如我们敲击电话号码、图片、地址及全球定位系统(GPS)那样。在用声音调控、实时计算数十个替代性交通路线的同时,再使用实时卫星数据来监控数百万车辆运行情况如何?这只是硅谷(Silicon Valley)工程师研发的课题。
相比之下,处理金融数据则只有两种选择,要么就采用普通的计算方法,但受限太多,否则便使用专业工具,让受过专门训练的人来操作。
电子数据表并非程序语言。它们在建立金融大数据模型并用于运算时,无需处理速度。这让人们走向数据分析时代,造就了大量的数据科学家,他们用复杂的程序语言来建立数据模型。但这种方法并非万灵药:数据分析师可谓凤毛麟角,因此雇佣成本极高,他们通常需要数天时间才能提交一份死板的个人报告,而且这些报告通常未相互整合。花大量时间来整合数据,并使之标准化是一项枯燥的工作,就人才利用而言,这显然不是一个明智的选择。
更重要的是,它还会导致依赖性的产生。在全球金融公司中,众多的专业人士在进行风险管理、获取高额利润及建构复杂模型时不得不依赖少数的程序员和数据分析师。在金融和投资领域中,人才被分为两类,一种是能够编程的人,另一种则不能。
然而,即使华尔街的资本家也不得不接受这种酬金及收费结构的安排,意味着他们自己不能独立地计算金融数据,这种依赖性发展是不可持续的。
计算金融学应该人人都可参与其中,非程序员也能掌握高端计算能力,正如像苹果(Apple)和谷歌(Google)这样领先的消费者科技公司将军事导航系统转化为民用的那样,非技术人员用指尖和声控便可实现导航。
Adobe公司是PDF格式文件及Photoshop的发明者,它最近推出了一款名叫Muse的产品,企业借助它可实现“零编码”设计和发行专业网站。当然,如果科技发展到这种程度——非程序员也可使用图形式用户界面(GUIs)来创建企业级的互动性网站时,“研究周期将由天缩短至分钟”金融专家离无需编码即可设计大数据复杂问题的日子也就不远了。
许多在新一代金融科技岗位上工作的人们都相信,我们正进入零编码运动终将到达金融计算领域的时代。
可喜的是,研发图形式用户界面的工作正有条不紊地进行,与此同时,以云为基础、大规模平行计算的技术也在开发中,在它们的帮助下,华尔街的非程序员对大数据可实现近乎实时的复杂计算,同时,还可以对结果进行直观理解和描述。
如此一来,随着数据分析师和程序员的工作对外开放,每个金融专家都可接触到这一“秘密”。他们可以不用编码,不用依赖他人或机构便可以设计和测试量性金融研究和投资策略。
研究周期将由天缩短至分钟。大量的异质信息可以与市场数据进行整合,人们对其几乎可以实时进行直觉分析。这意味着,之前用于数据分析表操控投入的数百万小时及高价人力资本都可以得到节约,目前为这些任务所困的专家也得以解放,以便投入到解决更重要的问题中,并找到所需答案,这一切用声音、指尖和眼睛就可以完成。
作为大数据分析的新宠儿,“零编码”能否不辱使命,履行时代赋予的责任和义务,是人们关注的焦点。从目前来看, “零编码”运动一旦触及资本市场时,将引发革命性的变化。新型零编码平台将孕育可接入性和英才管理,与之相伴的是,人们将能更好更快地做出抉择,在冒险时信息也更加充足。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19