京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析的新时代宠儿能否不辱使命
提起“零编码”运动,相信很多人都很陌生,对于生活在大数据时代下的人们,必须要了解“零编码”运动,“零编码”运动由比尔·盖茨发起,史蒂芬·乔布斯对其进行了完善。这项运动正逐渐延伸到资本市场。
1979年,在乔布斯参观帕洛阿尔托研究所中,当他看到了命令行界面的指向-点击更换的第一个原型时,便萌生了进入用户友好界面时代的想法:“他们给我展示的第一样品便把我深深地吸引住了,它就是图形式用户界面……仅仅十分钟,我便意识到,在将来,所有的电脑都会以这种方式来工作。”
我们已经习惯于用指尖将含有上百万数据点的虚拟图进行放大查看,用系统把相关信息用阶段和层次来展现,正如我们敲击电话号码、图片、地址及全球定位系统(GPS)那样。在用声音调控、实时计算数十个替代性交通路线的同时,再使用实时卫星数据来监控数百万车辆运行情况如何?这只是硅谷(Silicon Valley)工程师研发的课题。
相比之下,处理金融数据则只有两种选择,要么就采用普通的计算方法,但受限太多,否则便使用专业工具,让受过专门训练的人来操作。
电子数据表并非程序语言。它们在建立金融大数据模型并用于运算时,无需处理速度。这让人们走向数据分析时代,造就了大量的数据科学家,他们用复杂的程序语言来建立数据模型。但这种方法并非万灵药:数据分析师可谓凤毛麟角,因此雇佣成本极高,他们通常需要数天时间才能提交一份死板的个人报告,而且这些报告通常未相互整合。花大量时间来整合数据,并使之标准化是一项枯燥的工作,就人才利用而言,这显然不是一个明智的选择。
更重要的是,它还会导致依赖性的产生。在全球金融公司中,众多的专业人士在进行风险管理、获取高额利润及建构复杂模型时不得不依赖少数的程序员和数据分析师。在金融和投资领域中,人才被分为两类,一种是能够编程的人,另一种则不能。
然而,即使华尔街的资本家也不得不接受这种酬金及收费结构的安排,意味着他们自己不能独立地计算金融数据,这种依赖性发展是不可持续的。
计算金融学应该人人都可参与其中,非程序员也能掌握高端计算能力,正如像苹果(Apple)和谷歌(Google)这样领先的消费者科技公司将军事导航系统转化为民用的那样,非技术人员用指尖和声控便可实现导航。
Adobe公司是PDF格式文件及Photoshop的发明者,它最近推出了一款名叫Muse的产品,企业借助它可实现“零编码”设计和发行专业网站。当然,如果科技发展到这种程度——非程序员也可使用图形式用户界面(GUIs)来创建企业级的互动性网站时,“研究周期将由天缩短至分钟”金融专家离无需编码即可设计大数据复杂问题的日子也就不远了。
许多在新一代金融科技岗位上工作的人们都相信,我们正进入零编码运动终将到达金融计算领域的时代。
可喜的是,研发图形式用户界面的工作正有条不紊地进行,与此同时,以云为基础、大规模平行计算的技术也在开发中,在它们的帮助下,华尔街的非程序员对大数据可实现近乎实时的复杂计算,同时,还可以对结果进行直观理解和描述。
如此一来,随着数据分析师和程序员的工作对外开放,每个金融专家都可接触到这一“秘密”。他们可以不用编码,不用依赖他人或机构便可以设计和测试量性金融研究和投资策略。
研究周期将由天缩短至分钟。大量的异质信息可以与市场数据进行整合,人们对其几乎可以实时进行直觉分析。这意味着,之前用于数据分析表操控投入的数百万小时及高价人力资本都可以得到节约,目前为这些任务所困的专家也得以解放,以便投入到解决更重要的问题中,并找到所需答案,这一切用声音、指尖和眼睛就可以完成。
作为大数据分析的新宠儿,“零编码”能否不辱使命,履行时代赋予的责任和义务,是人们关注的焦点。从目前来看, “零编码”运动一旦触及资本市场时,将引发革命性的变化。新型零编码平台将孕育可接入性和英才管理,与之相伴的是,人们将能更好更快地做出抉择,在冒险时信息也更加充足。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08