
大数据分析:描述型、预测型和规定型
有什么可以区别这三种主要类型的分析呢?一位数据科学家解释了其中的差异。大部分原始数据,特别是大数据,不能在其未加工状态为我们提供很大的价值。当然,通过应用合适的工具,我们可以从这个存储的碎片中提炼出有力的见解。
任何大数据的设置,第一步是捕获大量的数字信息,“使其不存在短缺的问题”迈克尔·吴博士说。
有了第一手资料,就可以开始做分析了。但是,你该从哪里开始?哪一种分析类型更适合你的大数据环境呢?
吴在接受采访时解释了描述型的,预测型和规范型分析的不同,以及它们如何为组织提供价值。
他说。“一旦你有足够的数据,你就开始看到模式了,你就可以建立一个这些数据如何起作用的模型了。一旦你建立了一个模型,你就可以进行预测了。”
第一步:描述型分析
将描述型分析称为“最简单的一类分析,”利用这种分析你可以将大数据压缩成更小,更有益的信息。“记住,最原始的数据,尤其是大数据,不适合供人分析,但我们从数据中得出的信息是可以供我们分析的,
描述型分析的目的是总结发生了什么事。吴估计,超过80%的商务分析——最明显的是社会分析——是描述型的。
预测型分析是数据缩减的下一步
它利用各种统计,建模,数据挖掘技术和机器学习技术来研究近期的和历史的数据,从而使分析家对未来做出预测。
“预测型分析的目的不是为了告诉你将来会发生什么,”吴博客中写到。 “它不能做到这一点。事实上,任何分析都不能做到这一点。预测型分析只能预测在将来可能发生的事情,因为所有的预测型分析都是概率性的。”
吴告诉信息周刊说,在预测型分析的最一般的情况下,“基本上你需要得到你预测中没有的数据”
例如,情感分析是预测型分析的一种常见类型:
吴说:“纯文本的输入模型,以及这一模型的输出是一个情感指数,无论是积极的,消极的,或介于+1或-1之间的东西。”
在这种情况下,该模型计算出分数,但是它不一定能预测未来。相反,“它能预测我们没有的数据,即情绪标签数据,无论是正面或负面,”吴说。
规范型分析这一新兴技术通过建议一个或多个课程行动,以及显示每一决策的可能成果,超越了描述型和预测型模型
“规定型分析是预测型分析的一种,”吴说。“基本上是当我们需要规定一个动作,因此交易的决策者可以利用这一信息并采取行动。”
他补充说,预测型分析不能预测一个可能的未来,而是基于决策者行动的“多个未来”。
此外,规定型分析需要一个预测模型有两个额外的组件:可操作的数据和一个可以追踪所采取的行动所产生结果的反馈系统,。
“由于规定型模型能够预测基于不同行为选择可能带来的各种后果,它也可以为您推荐基于任何预先指定结果的最好的行动过程,”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14