
大数据分析谨慎对待
目前,在大数据时代下,无论是在社会用人单位或者是个体方面都会涉及与处理相关数据信息的问题,社会大众在应用数据信息之际也被社会诸多的数据信息所围绕,即使现代社会数据信息的发展情况较为良好、也让社会大众更为信服,然而在社会大众对大数据的印象观念中,数据形式的发展已经超过了他们所预想的、数据总量已经超过社会大众所理解的范畴,应当如何正确、有效地处理该部分数据信息已经变为现代社会大众共同面对的问题,需求人们谨慎地对待。
实施数据分析的方法
正确地对数据进行分析过程已经作为大数据时代对待信息量极大的数据处理的关键性环节。即使大数据的优势较为突显,但仍然在处理阶段存有务必解决的3大问题:大容量数据、分析速率以及多格式的数据,这三大问题使得现代标准化的储存技术难以对大数据执行相关的储存过程,进而需求人们积极地引入较为科学、有效的分析系统,进而对大数据实施分析过程。
Hadoop HDFS主要是采用流失数据询问形式进而实现容量较大文件的储存,主要是运用在商业化硬件群体中,而所谓的商业化硬件群体,即是区别于低端硬件,且相对于低端硬件群体而言其产生问题的机率是大大地降低的。Hadoop可以不用在价格较高且可信度高的硬件上运用,即便是面对产生问题机率较高的群体,HDFS在面对问题之际仍然会采取继续运用的手法而且与此同时不会让用户发现较为突兀的间断问题,这样的理念从本质上大大地减少了针对机器设备的维修维护费用,特别是对于同时监管成千上万部机器设备的用户。
2.Hadoop的优点与不足
Hadoop是一项可以针对诸多数据实行分布型模式解决的软件架构,与此同时其处理过程主要是依据一条可信、有效、可伸缩的途径进行的,这点也是 Hadoop所独有的优点。然而众所周知,每样事件都不能做到完全的完美,Hadoop与其它新兴的科学技术相同,一定的不足在实际应用过程中变得日益明显:第一,现阶段的Hadoop针对企业内外部信息的维护、保护效用较为匮乏,项目的设计工作人员务必选择自行手动的方式进行数据的设置,并且这一过程较大程度上依赖设计工作人员确定相关数据信息的准确性,形成时间浪费的局面;第二,Hadoop需求社会具备投资构建专用的计算集群,可是这一般会容易形成单个储存、计算数据信息和储存或者CPU应用的难题,并且这样的储存形式在其它项目上仍然会存有兼容性的难题。
现阶段的大数据时代常用于数据挖掘项目的方法较多,比如分类法、回归分析法、关系规则法、Web数据挖掘法等,本文主要是针对分类法、回归分析法、Web数据挖掘法对数据挖掘过程进行分析
1.分类法。分类法主要寻找规模较大的数据库当中其中一组数据的相同特质且依据划分形式把数据划分为不一样的种类,对其实施分类的主要目的是利用划分形式,把数据库当中的数据项目投放至特定的、规定的类型中。比如现今淘宝商店主要是依据用户最近的购买状况对用户实行相关的划分工作,再者能够更为有效地对用户实行推荐,进而逐渐提高淘宝店铺的销售量。
2.回归分析法。回归分析法主要是展现数据库当中数据信息的独有特质,利用函数来展现相关数据间的不同联系进而察觉相关数据信息特质的依赖程度。回归分析法能够被运用至各项针对数据序列的预计与测量以及存有联系的数据探究中,而在市场营销方面,回归分析法能够在每一层面上有所体现,比如企业能够对本季度销售量执行相关的回归分析法,继而便于对下季销售量进行较为接近的预测并且对相关的问题采取不一样的解决方案。
3.Web数据挖掘法。Web数据挖掘法主要是针对网络式数据的综合性科技,目前在全球范围内较为常用的Web数据挖掘算法主要有PageRank算法、 HITS算法和LOGSOM算法,以上的三种算法所涉及的用户主要是指较为笼统的用户,没有较为鲜明的界限对用户进行详细、谨慎地划分。然而当前Web数据挖掘法也正迎来了一些挑战,比如用户分类层面、网站公布内容的有效层面、用户停留页面时间长短的层面等。在大力推广与宣传Web技术的大数据时代,以上所提及的挑战也应当引起社会大众的关注,并且务必要谨慎地对待。
总之,即便现今我国正步入大数据时代,可是现阶段我国数据的相关技术仍然停留在初创的时期,更深一层地改进与发展有关数据分析技术仍然是目前社会针对数据专题的热门话题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29