
使用R进行统计分析—概率计算
R语言中提供了很多概率函数,可以方便的计算事件发生的概率。如二项分布概率函数和泊松分布概率函数。本篇文章介绍如果使用R语言中的这些函数求解事件发生的概率。
概率函数和前缀
R语言中每个概率分布都有对应的函数名称,例如二项分布是binmo,泊松分布是pois,正态分布是norm等等。每个函数都分别有四个不同的前缀,加上前缀可以生成随机数,求解概率和临界值等等。下面是四个前缀对应功能的说明。
r = random = 随机
d= density = 密度
p= probability = 概率
q =quantile = 分位
二项分布概率
假设网站的Landingpage页面中共有20个入口,那么我们预估每个入口被点击的概率为1/20,即P=0.05。(实际情况会复杂一些,每个入口在页面中的位置和展现的形式都 会不一样,一般首屏的入口比后面的入口会获得更多点击,图片和按钮形式的入口比文字类的入口更容易受到关注,导航和焦点图和Action按钮比其他类型的入口更容易 被点击。如有要获得最真实的点击概率,需要参考这个页面中每个入口的历史点击概率数据,这里我们只是假设一种理想情况来说明计算过程。)那么在10000次点击中, 关键按钮获得550次的概率是多少?
先来简单介绍下R语言中的二项分布函数和其中参数的含义,二项分布函数为binom,前缀d表示求密度,前缀p表示求累计概率。参数中X表示实验的成功次数,size表示实验次数,prob表示概率值。在这个例子中成功次数是550,实验次数是10000,概率为0.05。
#点击率0.05的情况下10000次点击中关键按钮恰好被点击550次的概率
> dbinom(x = 550,size = 10000,prob = 0.05)
[1] 0.001362855
经过计算10000次点击中关键按钮恰好被点击550次的概率为0.0013,这只是550次这个事件发生的概率值,并不包含549次点击和551次点击。但实际情况中恰好获得550并不是我们实际的目标。因此我们换一种计算方法再来看下。
#点击率0.05的情况下10000次点击中关键按钮被点击1-550次的概率
> sum(dbinom(x = 1:550,size = 10000,prob = 0.05))
[1] 0.9889429
在成功次数X中从之前的550变成了1:550,然后进行sum求和。获得从1点点击到550次点击的累计概率。从结果中可以看到概率高达0.98。这能说明10000次点击中关键按钮获得550次点击的概率非常高吗?我们能信心满满的说获得550次点击是个高概率事件吗?恐怕还不行。因为这是一个累计概率值,是从1次到550次的汇总。但我们的目标是获得550次或更多的点击,那么550次以下的点击量概率其实是我们不需要的。因此实际的概率值没有这么高。
> pbinom(q = 550,size = 10000,prob = 0.05)
[1] 0.9889429
计算积累概率值还有一个更简单的方法就是在二项分布概率函数的前面加前缀p,就可以自动获得550次点击的累计概率值了。结果与前面的方法一致。
#点击率0.05的情况下10000次点击中关键按钮获得500次到550次区间的点击的概率
> sum(dbinom(x = 500:550,size = 10000,prob = 0.05))
[1] 0.4953496
前面两种方法获得的概率值一个太低,一个太高。还有一种方法是只计算某个区间的概率值,这里我们将获得点击的次数限定在500次——550次之间,来求这一区间的概率值。从结果来看10000次点击中关键按钮获得500次——550次点击的概率为0.49。
#点击率0.05的情况下10000次点击中关键按钮分别获得500次到550次点击的概率
> dbinom(x = 500:550,size = 10000,prob = 0.05)
[1] 0.018301669 0.018265138 0.018190454 0.018078155 0.017929014 0.017744025 0.017524393 0.017271524 0.016987006 0.016672594 0.016330195
[12] 0.015961845 0.015569690 0.015155968 0.014722985 0.014273095 0.013808680 0.013332131 0.012845824 0.012352105 0.011853270 0.011351550
[23] 0.010849097 0.010347966 0.009850108 0.009357356 0.008871418 0.008393869 0.007926149 0.007469553 0.007025237 0.006594211 0.006177343
[34] 0.005775361 0.005388857 0.005018291 0.004663995 0.004326183 0.004004957 0.003700313 0.003412150 0.003140280 0.002884435 0.002644275
[45] 0.002419399 0.002209352 0.002013632 0.001831702 0.001662993 0.001506913 0.001362855
以上是点击量500次——到550次分解的概率值,0.49的概率值由以上的各个概率汇总而来。
#点击率0.05的情况下10000次点击中关键按钮获得550次以上点击的概率
> sum(dbinom(x = 551:10000,size = 10000,prob = 0.05))
[1] 0.01105708
再来看最开始的问题,10000次点击中关键按钮获得550次点击的概率。550次以下的点击不是我们希望的结果,因此我们再来看下点击量超过550次的概率有多少。从结果 来看获得点击量在551次——10000次的概率仅为0.011,因此获得超过550次以上的点击的概率比较低。
#点击率0.05的情况下10000次点击中关键按钮获得550次以上点击的概率
> 1-pbinom(q = 550,size = 10000,prob = 0.05)
[1] 0.01105708
由于从0到10000次点击的所有概率为1,因此用1减550次以下的概率值也能获得相同的结果。
泊松分布概率
假设在一次市场活动中,上一个小时中有40个用户注册,那么下一个小时有50个用户注册的概率是多少?
这里需要使用泊松分布概率函数,泊松分布函数是pois,第一个参数x是下一个时间段事件发生的次数,lambda是上一个时间段事件发生的次数。在这个例子中x=50, lambda=40。
#上一小时产生40个注册用户,下一小时产生恰好50个注册用户的概率
> dpois(x =50,lambda=40)
[1] 0.01770702
经过计算,下一个小时恰好有50个注册用户的概率为0.017。与二项分布中的问题一样,0.017是恰好50个用户的概率。不是49个用户也不是51个用户的概率。
#上一小时产生40个注册用户,下一小时产生1-50个注册用户的概率
> sum(dpois(x =1:50,lambda=40))
[1] 0.947372
把下一小时注册用户的数量改为1:50,并进行求和,获得了下一个小时获得1-50个注册用户的累计概率值。这个值有0.94。但我们的目标是50个注册用户,虽然概率很高 但低于50的事件发生并不是我们的目标。
> ppois(q =50,lambda=40)
[1] 0.947372
这是另一种计算方法,把泊松分布函数的前缀换为p,计算50个注册用户的累计概率值,结果与前面的方法一致。
#上一小时产生40个注册用户,下一小时产生40-50个注册用户区间的概率
> sum(dpois(x =40:50,lambda=40))
[1] 0.4684008
前一小时40个注册用户,后一个小时目标50个注册用户,我们来看下下一个小时注册用户是40-50这个区间的概率是多少。经过计算这个区间发生的概率为0.46。
#上一小时产生40个注册用户,下一小时分别产生40-50个注册用户的概率
> dpois(x =40:50,lambda=40)
[1] 0.06294704 0.06141175 0.05848738 0.05440686 0.04946078 0.04396514 0.03823056 0.03253664 0.02711387 0.02213377 0.01770702
这里显示了40-50个注册用户分别的发生概率,0.46的概率值由以上各个概率值汇总计算获得。
#上一小时产生40个注册用户,下一小时产生50个注册用户以上的概率
>1-ppois(q =50,lambda=40)
[1] 0.05262805
最后再来看下下一个小时注册用户数量超过50的概率。用1减去50个用户的累计概率值就是超过50个注册用户发生的概率,计算结果是0.052,因此下一个小时获得超过50个注册用户的概率不高。文章来源:cda数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14