
大数据全面渗透人类生活,未来几年将渐入理性发展期
大数据正渐渐的从前几年的预期膨胀阶段、炒作阶段转入理性发展阶段、落地应用阶段,大数据在未来几年将逐渐步入理性发展期。有网络就有大数据,无论是个人手机拍照、发微信、微博互动,还是各个企业里发生的人事、财务、供应链、管理系统等产生的大量数据,通过网络汇集到一起产生的价值无可估量。
随着IT技术不断发展,我们已经进入到了大数据的时代,人类将在2020年创造出40ZB的数据量。在这种疯狂增长的背后大数据有以下七个趋势是我们不得不了解的。
技术的突破将使传感器体积微型化,它将出现在生产生活的每一个角落,甚至以靶向缓释胶囊形态进入人体内部,监测化学环境及组织器官的细微变化。
成本降低后,传感器不再需要回收,而像月抛隐形眼镜般一次性使用,完成使命后自动废弃,而新的传感器则源源不断地补充数据源;传感器节点数将达到万亿级别,其数据量将超过人类日常总传送数据量的百分之八十,新的低能耗无线通信标准诞生。
Google、百度、亚马逊等巨头将建立起完善的大数据服务基础架构及商业化模式,从数据的存储、挖掘、管理、计算等方面提供一站式服务,将各行各业的数据孤岛打通互联。
在用户与数据服务商之间是算法提供商,他们雇佣专业领域的精英人才与数据科学家,通过数据挖掘的方式,寻找事物间的联系。
而用户所需要做的便是像今天下载手机App一样,选择相应的数据服务端,付费,享受“N=All”的实时数据所带来的深刻洞察与行动指南。
个人的生活数据将被实时采集上传,饮食、健康、出行、家居、医疗、购物、社交,大数据服务将被广泛运用并对用户生活质量产生革命性的提升,一切服务都将以个性化的方式为每一个“你”量身定制,为每一个行为提供基于历史数据与实时动态所产生的智能决策。
如Alistair Croll所说:数据驱动下的世界给人最大的威胁是道德方面。我们以共享资源的方式分担风险(如保险),我们越是能预测未来,我们越不愿意和别人分享。
个人数据资产所有权,属于个人或是公司?隐私的边界何在?当公共利益与个人隐私发生冲突时如何抉择?数据是否具有地域性,如何处理跨国存储及管理的数据服务案件,等等。技术的发展将会倒逼国际社会制定并完善相应法律,而跨国企业将在其中扮演主导作用。
反过来,法律的制定也将推动数据安全技术的进步,智能程序将能根据不同情境启用相应的隐私级别,隔绝数据采集的“私密空间”将成为新的服务热点。
从苹果的Siri到Google的机器翻译,再到百度的深度学习及“百度大脑”,商业与技术的频繁互动将极大提升人工智能的进化速度。机器将得以理解人类文字、语音、图像、动作甚至表情背后的微妙含义,并以大数据为支撑,为人类提供效率与个性兼备的决策与服务。
想象一次旅行,人工智能分析你以往出行记录以及近期生活轨迹,结合对各大旅游景点、交通状况、天气预测等数据分析,提供给你最贴合心意的目的地,规划好线路的无人驾驶车辆依照行程将你送至景点,并根据你的行程及时调配车辆接送。
所有的酒店、餐饮、服务都已经依照你的生活数据进行深度订制,机器甚至会提醒你将美好时刻记录下来,发送给相关好友,提升关系的亲密度。而你遇到的所有异国文字和语言,都将经由翻译器实时转化为你的母语。这只是诸多场景中较简单的一个切片。
结合人工智能的机器人技术将取代从事简单机械劳动的人类,以及部分服务性行业,劳动力过剩将成为突出社会问题,也许电影《Her》中爱上程序的故事或将成为现实。
传统的劳动关系及组织形态将被打破,劳动者以液态形式自由流动结合,成为“液态公司”,通过大数据平台,将客户需求与人力资源进行精确匹配,个体能够最大限度地发挥潜能,同时打破地域、语言及文化的障碍,全球协作成为大趋势。
婚恋模式全面转型,个体可根据不同关系需要由大数据服务商进行精确匹配,确保身心、经济、价值观及生活方式上真正的“Match”,并订立有时效性的契约式关系。
传统家庭模式进入重塑阶段,人以群分变成人以“数”分,带有相似数据特征的群体会以类似公社形式聚居,以实现资源整合与生活方式上的高效和谐。
国际化大品牌以深度数据分析,聚集忠实核心用户群,并开发上下游生活方式产品服务,形成凝聚力极高的 “品牌部落”概念,人群甚至会以品牌作为图腾、姓氏或精神信仰。
科研领域由传统的“现象观察-理论假设-实践验证”范式,变迁为“数据挖掘-抽象模型-扩展应用”,由理念到实际应用的路径将被大大缩短,全面提升技术进步速度。
人从机械重复的低级劳动中被解放,投身更具价值的创造过程。大数据将帮助人类发现激发创造力与幸福感的有效机制,社会由物质文明进入灵性文明的新纪元。
这些设想听上去似乎像是天方夜谭,但电话、飞机、互联网,哪个不是曾经的奇想?当二十年后我们回首今天,这个被称为大数据元年的特殊时间点,许多事情已经悄悄地埋下伏笔:顶尖人工智能专家、Google大脑之父吴恩达加盟百度;Google低调收购大量机器人公司;微软发布虚拟个人助手Cortana,宣称正处于“人工智能的春天”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10