京公网安备 11010802034615号
经营许可证编号:京B2-20210330
学习总结:统计原理对数据分析的重要
最近开始业余学习CDA的课程,就发现统计原理对自己来说是很难的。去年在学SAS的过程中,就听说过,如果你能把那么复杂的统计函数及统计公式全部理解清楚的话,那你需要达到统计学博士的水平。而就数据分析跟数据挖掘来说,统计知识好像又占到了很大的比重。如何来处理这一部分知识就显得尤其重要了。

实际上,这一块知识在上数据挖掘及多维分析课程的时候就听过。唯一理解的比较好的就是决策树的算法,其他的算法都是直接加载相应的包来套入运算。数据分析,挖掘都是要对业务有很深理解的。有的时候,当我们对业务理解越细的时候,对我们的分析会更有帮助,而不是先去研究相关算法。所以,就个人的理解来说,先了解业务,再通过相应的业务去学习相匹配的算法更为有利。
而谈到对业务的理解,个人觉得这一块可能是自己的弱项了。因为了解一个行业最块的方法就是找到这个行业不同职位的人去聊天。与人面对面的互动对你了解并掌握这一行业的帮助无疑是最大的。单就CDA里边的银行数据来说,之前只是简单的有了用户的存,贷,信用卡的数据。而在大数据时代,相关的购物行为,结合相关城市社区数据,出行数据,这样就可以为用户形成一个多维护的数据画像,然后对不同类群的客户进行相应的营销引导。势必会产生新的业务增长。这一点,相信未来会在银行业遍地开花。
而统计学原理,两列数据的线性关系,齐次方程,K值,P值,均值,中位数。这一些概念相信只有在数据分析部分有用,而在业务分析,及营销部分更多关注的是结果。好的分析只有加上好的执行才能够产生效果。
实际上,很多时候,我们过分看重要分析过程,却忽略的执行过程中的商业逻辑。自从开始写R代码后,突然发现,自己的逻辑思维在逐步加强。对于数据的商业理解又多了一层。但最终是搞架构,还是营销,还是运营。现在还不是很清楚,但至少,会从产品经理做起。
可能个人还是比较喜欢跟人打交道吧!数据分析可以帮助自己理清所收集到的各样需求,而如何执行,如何落地才是更为重要的。对商业的理解可能是最考验一个产品经理的整体思维吧!前期总是对技术追求很多,但对商业逻辑没有整体思考!
什么是商业逻辑?就是你所负责的这个产品如何变成钱。在这一个过程中,技术是一个过程,需要技术,便又不能仅仅去依靠技术。做好合局规划,这才是一个产品经理的重点思考内容。
至于统计原理对数据分析的重要性,要明白你要的是分析的结果,还是过程的完美?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08