
数据科学家在大数据分析中的作用
大数据科学家的工作从企业的业务问题开始,下一个步骤是创建分析计划,即一些企业称之为“数据分析计划。”当然,你需要考虑到数据科学家的不同专业背景,如有数学界、软件工程、市场营销学、工商管理等等,几乎所有的数据科学家都会从他们的专业领域出发,设置各种技巧最终整合制定出专注于解决业务问题的计划。
数据科学家和他们的分析团队的计划提出了如何组装数据集,并制定了一个数据如何被用来解答业务问题的计划。
分析计划还可以成为数据科学家们进行交流和业务协作方面展开分析工作的又一利器。
分析工作
一旦分析计划获得批准并开始实施到位,数据科学家将利用一系列的工具和方法开始他们的分析工作,其中一些分析工具和方法可能是他们的企业所专有的。
数据安全
数据科学家甚至通过设置如何使用和操作业务数据的先例和政策,在大数据安全方面也起到了重要作用。通常情况下,数据科学家和他们的团队甚至有不受权限阻碍地进入到可能带来的业务的新的数据集的权利,然后帮助企业定义数据应如何杀毒,以保持分析业务的价值,同时最大限度地降低安全风险,并满足必要的合规性规则。
与高级管理人员的互动
数据科学家的角色可能会具有某类个性的吸引力,他们不总是处理与企业管理方面的数据,尤其是但这些大数据对于企业来说仍然新的、或者只有企业高层才有权限访问的数据。根据唐斯博士介绍:“这取决于企业的重点和规模。在某些情况下,企业的业务和产品都是建立在科学数据的基础上的,就像在Globys一样,在这种情况下,数据科学的访问权限代表了一定的行政级别。
他进一步补充道,“企业数据的科学驱动的是企业业务的测量和优化,而不是企业的产品,数据科学在对业务影响中起着直接报告的功能——例如移动运营商可能在品牌和营销功能方面的执行水平要同时直接报告,而金融服务可能是通过首席风险官。”
大数据产品化
虽然我们一直在数据运行领域努力,但数据科学家在大数据的大规模操作方面可能会扮演一个角色,加快大数据项目的产品化。这通常只发生在大数据输出具备市场价值,而且通过努力可以一次性的或通过订阅出售给外部客户。
知识产权和大数据
数据科学家可能已经通过诸如专利工作将保护知识产权作为自己角色定位的一部分了。保护知识产权可以是一个总体规划或基于自组织(ad hoc)的发现。而在中型企业或外包服务商的数据科学家的工作可能不包括处理知识产权问题,在大公司的数据科学家需要追求知识产权,以便保护他们的雇主市场上对于竞争对手的竞争优势。知识产权是面向客户的软件和服务。保护知识产权对于企业内部大数据工作则不是那么重要。
随着大数据在当前企业受关注度的日渐提升,我认为,知识产权保护将要成为数据科学家们的一个不断增加的工作部分,来确立自己所宣称的大数据的创新者和思想领袖的地位。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14