京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析模块建立五步走
必须采取有效的项目管理流程,以创造一个成功的大数据分析程序是十分重要的,也不能过分的夸大。以下的五点建议,可供企业参考借鉴,以帮助企业确保顺利实现部署:
首先,决定要收集哪些数据。
就其本质而言,大数据分析项目涉及大型数据集。但是,这并不意味着要所有的企业数据源,或是相应的数据源的信息都需要进行分析。企业需要确定那些是对于企业来说有分析价值的战略性数据。例如,什么样的组合信息可以帮助确定关键客户?或者需要什么样的数据帮助发现隐藏在股市中的交易模式?在规划阶段专注于一个项目的业务目标,可以帮助企业进行精确分析,以满足这些业务目标。在某些情况下,这确实意味着一切数据信息。但是,在其他情况下,它意味着只使用大数据的一个子集。

第二,建立有效的业务规则,然后通过他们创建的复杂工作。
应对复杂性是大多数大数据分析计划的关键环节。为了得到正确的分析结果,在这个过程中包括以业务为中心的数据拥有者是必不可少的,以确保所有必要的业务规则是事先确定的。一旦规则被记录在案,技术工作人员可以评估他们创造的工作的复杂性,需要把数据输入到相关的领域进行有价值的发现。这导致进入下一个阶段的实施情况,讨论如下。
第三,以合作方式将业务规则转化为相关分析。
业务规则只是制定有效的大数据分析应用的第一步。下一步,IT或分析专业人士需要创建解析查询和需要产生所需输出的算法。但这不应该在真空中进行。更好和更准确的查询都放在首位,重建是必须的。许多项目需要不断的重复,因为项目团队和业务部门之间缺乏沟通。持续的沟通和合作,会到来更流畅的分析开发过程。
第四,有一套维护计划。
除了最初的开发工作,一个成功的大数据分析倡议需要持续关注维护和更新。定期查询维护和保持高层对业务变化需求是重要的,但他们仅代表管理一个分析程序的一个方面。随着数据量的不断增加,企业越来越熟悉分析过程中,他们想解决的更多的问题将不可避免地出现。分析团队必须能够及时跟上,解决这些新增的问题。此外,评估大数据分析硬件和软件的选项的要求之一是评估其支持迭代开发过程中的动态业务环境的能力。一套分析系统如果能适应需求的变化,将随着时间的推移,保持其价值。
第五,时刻牢记用户的需求。
随着人们越来越感兴趣采用自助服务的商务智能(BI) 功能,您不应该对关注最终用户的大数据分析计划是一个关键因素感到震惊。当然,有一个强大的IT基础架构,可以处理大型数据集和结构化和非结构化信息是非常重要的。不过,开发一套可用的,易于交互的系统也是十分必要的,这样做意味着要考虑不同用户的需求。不同类型的人-从高级管理人员到操作工人、从业务分析师和统计人员将采用这种或那种方式访问大数据分析应用程序,他们所采用的工具将有助于确保整个项目的成功。这需要不同程度的交互功能,满足用户的期望。他们有大量的分析工具使用经验。例如,目前的仪表盘和数据可视化,对于企业管理人员和工人来说易于理解,使得他们不再倾向于运行自己的大数据分析查询。
没有一种方法可以确保大数据分析的成功。但是,遵循一系列的框架和最佳实践方案,包括上面提到的要诀,可以帮助企业正确行走在他们的大数据计划轨道上。大数据安装的技术细节是相当密集的,需要研究和深入地考虑。无论是技术方面和商业因素方面都需要考虑,以确保企业从他们的大数据分析的投资中获得期望的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05