
大数据分析领域的四大窘迫
在深圳大数据峰会上,永洪科技创始人&CEO何春涛依托他在BI和大数据分析20年的专业经验,为大家解析目前大数据分析领域的四个窘迫,以及5年内全球范围内大数据分析领域的发展趋势,并就2016上半年永洪科技可喜的进展状况向大家做了汇报。
大数据分析领域的四大窘迫
1、数据分析之数据准备瓶颈:OLAP
我们知道从上个世纪90年代,甚至包括80年代末,OLAP就已经被很好地使用了。但是我们知道企业的数据和运营的过程,是一个持续动态变化的过程,它需要在第一时间交给业务部门做数据分析,而OLAP做不到这一点。一旦有一个数据分析的变化,我们需要交给IT部门去重新构建OLAP。所以如果这个瓶颈不打掉,企业的数据化运营的链条是不通畅的,并且业务流程会很缓慢,同时企业的运营效率和竞争能力也会大打折扣。
2、大数据分析之找到答案瓶颈:静态报告
如果我们采用邮件的形式沟通,假设今天发出去,第二天才有回复,那这一天就浪费了。静态报告就跟邮件一样,我们需要的是一个及时交互的过程,对数据进行分析、发掘它的价值。假如看到报告后,我们就发现了一个问题,然后可能就会去问第二个问题。比如华南的几个业务增长发生了变化,上个季度可能是100%的增长,到这个季度增长降成了10%,这个时候我们就会去问为什么,但是静态报告是不能告诉我们答案的。这个问题只能再交给IT部门重新计算一遍,再给出一张静态报告。如果不打掉这个窘迫,会给企业数据化运营带来很大的挑战。
3、大数据分析之分析流程瓶颈:IT部门
一个企业里面有非常多的部门,假如有制造、市场、设计、人事、财务等部门。当这些部门有数据分析的需求时,他们都会递交给IT部门,然后IT部门的加班非常严重,他们疲于应付,但是这样做出的结果还非常不好,大家对IT部门的诟病都很深。比如做中秋节的策划,这个促销策划需要一些数据分析的报告来支撑。但是IT部门很可能在中秋节之前,还没有把报告交给市场部门,这会给企业的营销带来极大的不便。
4、大数据分析之厂商瓶颈:缺乏高质量的本土厂商
我们认为在国内缺乏高质量的本土厂商。以前大家在聊大数据分析这件事情时,很可能会说SAP、IBM等等,却没有一家真的做得很棒的本土厂商出现。也有一些本土大数据分析厂商,往往以非常低的价格和比较差的服务去做一些低端的市场。
我们知道其实在目前的中国,已经有非常多的好的企业,在各自的行业崛起。以前我们买一个电视机,可能要买东芝,后来我们可以买海尔。以前买空调需要买三菱,现在我们要买美的或者格力。在各个行业都发生了巨大的改变,有非常多的本土厂商在崛起,但是大数据分析这个领域,我们认为是没有的。所以这是我们非常大的一个责任,希望可以和诸位一起深入有效地合作,去改变这个现状,让本土的厂商可以提供已有的服务和产品,帮助大家做好大数据分析的支撑和服务的工作。
最近五年全球的大数据分析的趋势
1、探索性分析成为BI选型的唯一选择
这是Gartner2012年、2013年、2014年、2015年连续4年的数据分析的研究报告,提到的唯一的一个共性,探索性分析已经成为BI选型的唯一选择。在以前可能大家会说,数据分析我们就会用Cognos、BIEE或者BO,但是在今年Gartner的报告里面,Cognos和BO已经驱逐到第四象限,而BIEE已经被驱逐出去了。所以这样一个探索性分析的潮流,已经完全改变了数据分析的现状和未来。
为什么?就是因为之前我分析到的跟大家分享的那些瓶颈,其中业务人员自己动手基于数据做分析,从发现问题找到答案再采取行动,整个过程都已经变成了一个全球性的潮流。在这个方面,我也号召大家好好地审视一下自身的企业,到底应该怎么样构建下一代数据分析平台,去支撑未来5到10年的大数据分析的需求。
2、良好的企业管控下的探索式分析成为主流
早先业务人员使用数据分析,往往要使用一个离线的桌面程序,大家经常用的桌面程序是什么呢?Excel,还有包括后面出现的excel的高级升级版。这些离线的探索性分析的产品,在上个世纪90年代后期一直到2000年初,都获取了非常大的市场。
但是后来从Gartner的研究报告我们可以看到,很多企业尤其是大中型企业已经发现,如果采用离线的分析工具来对数据进行分析,数据的使用是缺乏良好的安全管控的,有可能非常重要的销售数据、生产数据,被分发到企业每个人员的终端笔记本上去了,这对企业的数据管控来说是非常可怕的。
我们目前构建数据分析,尤其对外提供数据分析的时候,有一个说法叫“数据不出口,数据服务要出口”,是什么意思呢?数据的原料是不能够离开这个企业的,但是数据的服务是可以从这个企业递交给第三方的。那么去中心化的探索性分析被放弃了,很重要的一点就是我们需要在良好的企业管控之下,去进行有序的、高质量的、高安全性的数据化运营工作。
3、云计算成为必然趋势
我们可以发现一个大趋势,最近这5年云计算已经变成了一个现实了。像国外的AWS、IBM,他们已经成为云计算非常大的玩家,在国内我们也看到有腾讯云、阿里云等众多的玩家。云计算改变了企业的IT服务,但是从TEWI和Gartner市场的统计报告我们可以看到,几乎所有大数据分析的厂商,他们收入的90%还是来自于线上的数据。为什么?这是一个很现实的问题,就是我们企业里面的数据,绝大多数的企业的数据,是不允许离开这个企业的。
所以我们分析这件事情的时候认为,企业的数据化运营工作,会变成一个以私有云和公有云混合到一起的服务工作。它肯定不会是以前单纯的私有云的服务,也不会是大家想象的可能在未来5年,全部变成了公有云的服务,它会变成一个混合架构。
4、分析应用市场将涌现巨大的创业机会
目前大数据分析的相关技术还在持续的演进当中,包括云计算、深度分析、自然语言等技术正在不断地成熟,并且会被引进到大数据分析这个领域里面,帮助企业更好地进行数据的价值发掘工作。
另外我们看到,商业智能与分析是一个充分竞争的全球化市场,它对创业者的要求是非常高的。比如说,永洪最开始创立的时候,就需要跟Cognos、BO一起去竞争,因为这个市场是没有任何壁垒的,它不需要牌照,在全球是一体化的竞争工作。所以当我们创业者要去做这个领域的时候,一定要确保自己在这个领域具备足够强的竞争力。另外我们也发现,虽然在平台和支撑上面创业的机会不是很多,但是在应用市场这个机会非常的多。所以这给我们做垂直化应用的企业,带来了很多的机会。
下一个趋势,我们认为分析应用市场将会涌现出巨大的机会,永洪内部培训很多同事,如果他们想做垂直的产品,我们也会把永洪的平台开放给他们,让他们基于永洪的产品去做像制造行业、银行、能源、交通各个领域的垂直产品的分析。我们认为分析市场将来会标准化,如果有人基于某个平台构建好一个分析应用之后,他可以快速地递交给全球各地的用户,这是基于标准化的前提所能够达到的一个结果。那么在标准化基础上,会诞生几家很巨大的平台厂商。
5、大数据分析未来有望像PC和汽车一样成为企业标配
BI与大数据分析领域,我们认为它还是处于比较早期的阶段,像20年代的汽车行业。20年代汽车还是一个非常小众的市场,没有进入每个家庭。它也有点像80年代的PC行业,当时整个上网机会还不是特别的多,如果要上机,我们需要单独到一个IT中心去进行上机的申请和最后上机的实际操作。但是大家知道,从80年代以后到90年代到2000年,PC变成企业和家庭里面每个人的标配,到后来我们的手机变成每个企业和家庭的标配。那么大数据分析将来也会变成企业里的每个业务人员的标配。
我们认为这在将来一定会变成现实的,这是在现在和将来永洪和大家一起持续努力的一个方向。我们要让企业里的每个人,都可以成为我们的用户,都可以因为我们的数据分析的能力,给自己赋能。这就是永洪的一个愿景:释放数据的价值,人人都是数据分析师。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14