
大数据时代的三个“关键词”
“十三五”时期,实施国家大数据战略,就是把大数据作为基础性战略资源,全面实施促进大数据发展行动,加快推动数据资源共享开放和开发应用,助力产业转型升级和社会治理创新。落实这一决策部署,要做的工作很多,其中,面向全社会普及大数据常识,既是打基础的工作,也是必不可少的环节。本文将围绕大数据时代三个“关键词”,做些必要阐释。
关键词1
数据化:信息社会的重要标志
数据化有狭义和广义之分。从狭义看,数据化是指将事物及其运动转化为可识别信息的过程。从广义看,数据化是指利用基础数据全面认知并优化改造客观世界的过程。数据是一种客观存在,把这些客观存在的数据找出来,就是数据化的过程。如何有效获取数据?其重要手段就是利用大数据,这本身也是数据化的集中体现。
大数据不同于小数据。相对于大数据而言,过去我们熟悉的标准化统计数据就是小数据。大数据之所以在网络时代快速发展,是因为有一系列幕后的推动力量,包括摩尔定律的作用、互联网与移动互联网的发展,以及社交网络、传感设备、智能终端、智能制造的出现等,正是这些力量促使了大数据爆发性增长。从种类上看,大数据不仅包括传统的统计数据,还包括实时、连续发生的交易数据、行为数据、传感数据,等等。其基本特点是多杂碎快。
大数据之所以重要,是因为它能做很多过去的小数据做不了的事情。大数据的作用可以简单归纳为5个效应:一是识别效应,它可以识别身份、位置、状态、真假;二是重现效应,它可以再现过去的场景,实现过程的追溯;三是关联效应,通过对数据的相关分析、联想分析、聚类分析,可以找出事物之间的联系;四是溢价效应,大数据的应用可以产生新的数据,有利于发现事物变化的内在规律;五是预测效应,利用大数据可以对经济、天气、灾害、疾病以及人类的行为进行预测分析。
数据化是信息社会的重要标志。人类经过农业社会、工业社会,现在已经进入了信息社会。信息社会一定是高度信息化的社会,也一定是高度数据化的社会。尤其是大数据技术的出现,使过去不可计量、存储、分析和共享的很多东西都被数据化了,这标志人类在寻求量化世界的道路上前进了一大步,人们认识世界的能力有了空前提高。就像我们现已熟知的定式、公理、公式,客观上早就存在,一经被人发现就变得非常有价值,成为我们行动的利器。数据也是这样,过去我们没有技术和手段,不能大量发现和捕捉到它。现在我们有了大数据技术,就离发现事物的本质及其变化规律更近了。所以说,有了大数据,所有可以数据化的信息都被数据化了,人类认识和改变世界的能力也就大大提升了。
关键词2
升维:数据化能力决定竞争能力
“升维”一词来自于科幻作家刘慈欣的小说《三体》。在这里借用这个词汇想表达的是,人类从农业社会、工业社会到信息社会,就是一个不断升维的过程。对于农业社会而言,工业社会就是升维。对于工业社会来讲,信息社会就是升维。信息社会与工业社会之间的竞争,不是在一个维度,更不在一个层次。
信息革命已经将人类带进了信息社会。所谓信息社会,就是建立在工业社会之上,全面实现信息化,并体现出以人为本、可持续和包容发展理念的新型社会。今天的中国,正处在重要转型期。虽然我们面临许多困难和挑战,但在创新、协调、绿色、开放、共享的新发展理念引领下,新型工业化、信息化、城镇化、农业现代化和绿色化进程势必持续向前。因此,当工业社会升维到信息社会时,我们的城镇和乡村也会随之加快信息化进程。
仅以城市为例,工业化城市升维到信息化城市,而信息化城市的重要标志之一,就是高度数据化。城市的基础设施、经济、社会、政务、生活等都将在“升维”的过程中实现高度的数据化。概括地讲,就是一切都将“用数据说话,靠数据决策,依数据行动”。信息革命是推动城市数据化的主要动力。我认为,未来的推动力将会来自以下几个方面:一是信息化,全球经济发展的推动力;二是网络化,连接一切;三是宽带化,“极速”宽带不是梦;四是智能化,智能产品、智能工厂大量涌现;五是服务化,服务环节创造的价值可以占到90%以上;六是社会化,管理运营的社会化;七是生态化,从价值链向生态圈转型;八是平台化,企业运营、政府治理都将平台化。围绕上述发展趋势,决定城市竞争力的核心要素,将包括:数据采集能力、数据处理能力、数据传播能力、数据利用能力、数据安全能力等。未来城市之间的竞争将体现为数据化能力之间的竞争。
关键词3
数据开放:大数据战略的突破口
实施国家大数据战略,关键在于推进数据资源开放共享。推进大数据战略,并不需要政府花钱大量补贴和建立这一领域的新兴产业,只需加快政府数据开放共享,就能催生一个重要的新增长点——新型的服务业。建立大数据的基础设施,可以让经济增长潜力迅速迸发出来,这是因为公司可以用这些数据创造价值,进而可能创造新的服务行业。数据已经在那儿了,开放没有什么成本,赢得的却是新的发展机会。
需要说明的是,大数据战略中的数据开放,与我们常说的信息公开有所不同。以往的信息公开往往是政府将加工好的信息放到网上去,而数据开放则强调开放更多的基础数据,比如,交通大数据、通信大数据等。让基础数据流动起来,才能够真正释放其应有的价值,才能够通过这些数据去整合资源,创造出新的商业模式和新的业态。近年来,国内已有不少城市和企业开展了类似的数据开放应用活动,通过数据开放产生经济和社会价值的实践,让人们逐渐认识到数据的价值和数据开放的重要性。总之,信息社会已经来临,现在的行动,决定未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30