
大数据不会“主动”为企业做的10件事
很多企业都对大数据寄予厚望,希望它能够解决长期存在的业务问题,让公司更具竞争力并设计、制造出更好的产品。然而,这样的热忱很容易带来对大数据的高估,因为大数据“本身”并不会带来任何价值。本文列出了10个大数据不会“主动”为企业做的事情,除非企业对这些数据进行更加深入而细致的分析与挖掘工作。
1、解决业务问题
大数据并不会解决业务问题,业务依然需要人来解决。只有那些好好坐下来、在他们开始使用大数据之前想好希望从大数据中获得什么的公司,才能从大数据中得到他们正在寻找的商业智能的出路。
2、为数据管理提供帮助
IBM声称全球每天产生大约2.5 quintillion的数据。其中大多数是大数据。不出所料,全球企业内处于管理中的数据也呈现指数级的增长。随着数据大量堆积而没有明确的数据保留和使用策略(尤其是针对大数据),组织机构正在面临着管理这些数据的难题。
3、解除安全担忧
对于很多企业来说,确定大数据的安全访问仍然是一个开放的话题。这是因为大数据的安全实践并不像系统记录数据那样有着明确的定义。我们正处于这样一种状态,IT应该与终端用户合作,确定哪些人访问了哪些层面的大数据以及相应的分析。
4、解决关键IT技能的问题
大数据数据库管理、服务器管理、软件开发以及业务分析技能都是很短缺的。这使得很多已经匮乏关键IT技能的IT部门负担更重了。
5、减少遗留系统的价值
如果有的话,遗留系统往往比大数据更具有价值。通常情况下,这些遗留系统提供了关于如何最好地剖析大数据、回答重要业务问题的重要线索。
6、简化数据中心
大数据要求并行处理计算集群,以及一个与传统IT交易和数据仓库系统类型不同的系统管理。这意味着运行这些新系统所需的能耗、智能、软件、硬件和系统技能也是不同的。
7、改善数据质量
传统交易型系统的美妙之处在于这些系统都是固定数据字段长度的,全面的编辑和验证数据,有助于数据相对干净的形式。而大数据就不同了,它是非结构化的,可能是任何一种格式。这使得大数据质量成为一大难题。数据质量至关重要。如果没有数据质量的话,你就不能信任数据查询的结果。
8、验证现有投资回报率指标
从系统记录中测量投资回报率的最常用方法就是监控交易速度然后推断出这在获得收入方面意味着什么(比如你每分钟和获取的酒店预订单)。交易速度并不是大数据处理的一个很好的度量标准,这可能需要数小时甚至是数天时间处理并分析大范围的数据。相反,评估大数据处理有效性的最佳标准是利用率,定期评估的结果应该在90%以上(相比之下,交易型系统大约只有20%)。开发针对大数据的新型投资回报率指标很重要,因为你仍然需要去说服CFO以及其他管理层证明大数据投资的价值。
9、大部分数据都很有用
95%的大数据都是“噪音”,也就是对业务智能完全没有贡献或者贡献很小。筛选出这种数据以获得智能将会对企业大有用处。
10、每一次都奏效
多年来,大学和研究中心都在进行大数据的实验,以寻求在基因组工程、医疗药物研究以及确定外星生物是否存在等研究中的那些难以捉摸的答案。虽然最终这些数据分析算法产生了一些结果,但是更多的仍然是不确定的结论。如果说大学及研究环境中的不确定性尚可容忍的话,那么企业环境中就绝非如此了。这是IT与其他关键决策者都需要对此有所预期。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14