京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“数据分析师”这个职业有多热
根据“谷歌趋势”,在2011年的时候,“大数据”还很少被用作搜索词,但是从2012年开始到现在,你几乎能听到各行各业的人都在谈论“大数据”。
这是一个增长非常迅速的领域,而且催生出了很多的工作机会。麦肯锡公司的一份报告预计,到2018年仅美国在“具备深入分析能力”的大数据专业人才方面的缺口就在14万人到18万人之间。据New Vantage Partners公司对《财富》美国500强公司的调查显示,85%的500强企业要么已经推出了大数据项目,要么正打算推出。未来几年他们花在数据分析上的投资将平均上涨36%。难怪《哈佛商业评论》的一篇文章里将数据分析称作“21世纪最热门的职业。”

对有志进入“大数据”职业领域的人来说,首先要搞清楚的一件事就是它的职业门槛有哪些。这个问题看似简单,实则复杂。大数据领域的发展非常迅速,而且各个公司的招聘标准也是五花八门。比如有些雇主可能要求你掌握某种特定的编程语言,但有些公司就根本没有这种要求。在这一点上,中美两国公司对大数据人才的期望体现出了一些不同的特点。
我们先来看国内的,在网上搜索“数据分析师”这个职位,百度显示的最新招聘信息约有近9000条。以其中一家“国内知名手机阅读公司”的招聘要求为例,应聘者需要满足:
·三年以上相关工作经历,至少有1-2个成功的中型项目经验;
· 优秀的商业分析报告撰写能力,有及时发现和分析其中隐含问题的敏锐性;
· 至少掌握一种数据分析工具(R/SAS/SPSS/Matlab),实现优化算法;
· 至少熟悉一种数据库,熟练运用SQL,有丰富的数据分析、挖掘、清洗和建模经验;
· 熟练使用JAVA/C++/Python/PHP 构建中等规模的数据分析系统, 有丰富的脚本处理数据经验。
再看看百度自家招聘数据分析师的职位要求:
·统计,数学,数据挖掘等专业;
· 互联网行业分析领域两年以上工作经验者优先;
· 扎实的机器学习/NLP理论和技术基础,能熟练使用SPSS/SAS/MATLAB等工具;
· 优秀的口头和书面表达能力;
· 具备Unix/Linux环境工作能力,能使用shell/python等脚本语言优先;
· 优秀的分析问题和解决问题的能力,对解决具有挑战性问题充满激情;
· 良好的逻辑思维能力,学习能力强。
综合其他一些公司的相关职位招聘要求,大体上国内公司最看重的素质归纳起来有:能熟练使用数据分析工具(掌握SPSS/SAS/MATLAB是基本技能,有些公司会增加特定要求);有2-3年的工作经验;对数字敏感、分析能力、表达能力强。这些素质对从事数据分析来说都很重要。但问题是,大数据兴起也就是近两年发生的事,人才市场上哪里能迅速培养出这么多符合期望的候选人?
美国一些公司已认识到这一点,它们采取了更现实的做法:一方面,和大学合作,长期培养大数据专业人才以及开展相关研究,比如英特尔就和数据学专业排名靠前的麻省理工学院合作建立了大数据科学技术中心;IBM则投入1亿美元在中国大学推行大数据教育,目前已和北京理工大学、复旦大学、北京大学等7所大学达成合作。
另一方面,企业界已开始转换思路,不再寄望于找到某位全能型的天才来一手搞定所有的数据分析工作,而是吸引更多各有所长的人来组成一个能创造性解决问题的团队。有些甚至不需要有统计等特定专业背景。
所以对于想进入这个行业的人来说,别灰心,即使非计算机或数学科班出身,你依然有机会。美国大数据行业龙头FICO公司的首席分析官安德鲁•詹宁思就曾向《财富》表示:“如果你不是一个纯粹搞数学的人,或者不是一个专业的编程人员,那也没关系,因为你可以和那样的人在同一支团队里工作。除了量化分析方面以外,我们还非常需要具有求知和好奇天性的人,以及能够指出业务上的问题并且能与客户沟通的人。”
最后,我们来看一下这个行业的回报怎么样。由于目前大数据人才依然处于需求大于供给的状态,在美国,一位资深数据科学家在大型社交媒体企业当中可以拿到17.5万美元的年薪,而相关自由职业者的时薪可达200美元。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27