
大数据应用的10大神话和误区
英国科技新闻媒体V3日前针对大数据应用,列举了10大有关神话和误区。
1、大数据是新技术
大数据是新的术语,但其海量数据分析的概念并不新。许多人,包括Teradata首席技术官Stephen Brobst在内认为,对于那些刚开始认识到数据价值的用户,大数据有一些误导。Brobst表示:“大数据是一个长期项目,而不是12个月内,是24~36个月的世间情。”
2、大数据是一种商品
初次接触大数据概念,会认为它是一种特殊形式数据,独立于其他低端数据格式。但事实并非如此。
“你能买一个数据库数据吗?”Gartner杰出分析师Donald Feinberg说,“是的,你可以买到100台服务器,但是你可以购买大数据吗?因此,这不是一个市场。它只是IT市场的一部分。它价值10亿美元?是的,但它不是一个市场,它甚至不是一种商品,而且还不是新的。”
3、大数据是一个问题
这是一个近似半斤八两性质的公开辩题,但基于其基本形式,大数据具有巨大潜力,即使其没有被正确使用,或者甚至根本没有被使用。
因此,只要数据存在,并且可在未来用一种有效的方法加以处理,就应该有机会存在。也是一个价格昂贵的机会,也许,但仍然有机会。
数据问题是如何通过分析将其转化为清晰和实用的内容,这对企业是一个巨大的挑战。
4、你的数据只对你有用
据Gartner的统计,30%的企业会在未来几年会找到一种方式来套现其所持有的数据。将用户数据出售给出价最高者会引起担心和恐慌,但十有八九都会受到保证或者威胁。
5、人们不关心你如何使用他们的数据
很多人并不喜欢针对性或相关性的广告,但基于大数据驱动的市场营销接下来的重点,这事事实。但当你进入一家商铺,你的手机开始震动,告你在竞争对手店可以更低价格买到同样的产品时,这个时候你就会想到所签约的服务商。
即使是遭受恶评的利用人行为的无害化尝试也是具有一定价值的,其中伦敦的WiFi Smartbin就是一个典型的例子,它保持跟踪人们智能手机MAC地址,在广告风箱显示具有针对性的广告。不久伦敦城市管理公司意识到事情发生后,禁止了该行为,但这也不禁让我们联想到了Facebook所面临的2000万美元的集体诉讼。
6、大数据不会降落在监狱里的你
在这一点上,我们正在涉及一个颇具争议的话题。但Gartner公司的Feinberg确信,将会有相当的数据采集会涉及该领域。
“CIO会有多少人会去坐牢?如果觉得我在开玩笑,那么我就做另外一个大胆性假设:我认为Facebook总裁会在他离开Facebook之前去坐牢。我不知道什么时间,但它会发生。”Feinberg说,无论夸张与否,这都值得思考。
7、政府对你的社交媒体数据不感兴趣
许多人喜欢在Twitter上谩骂政客——反正他们也不会看到,对吗?也许是,但这对于了解选民的意向具有一定的参考价值,Feinberg说。
“奥巴马关心,因为他当选了,如果你看怎样当选的,他的团队使用社交数据和情感分析找出他不能胜出的目标对象。我不是说这他当选的唯一原因,但对于政府部门,社会资料和数据已经变得非常重要。”Feinberg说。
8、你需要新的数据进行分析
当你有一个业务目标之后,且数据仓库被0和1填充满了之后,你就可以分析使用你的数据了。有研究表明,大多数企业已经开始使用大数据获取信息,一旦他们想到了一个问题,就试图通过大数据分析来解决问题。
就像全球物流公司DHL早些时间像V3的记者所解释的那样,尽管此前在包裹投递的每一个阶段都有追踪,但是分析系统建立之前,没有办法利用这些数据。
9、有很多人以使用大数据
错了。这是一个世界性的难题。
Gartner统计数据表明,熟练的数据分析科学家如此缺乏,公司存在75%以上的大数据分析职位空缺。竞争惨烈,换句话说,这是一个很棒的职业。
话虽如此,这也取决于你如何定义一个数据分析科学家。Tesco公司的Duncan Apthorp,一位大数据分析师表示,他所存在公司并不要求名牌院校,这意味着普通毕业生也很有机会。
10、大公司都知道他们在做什么
显然不是。根据Gartner对数百家企业案例的研究:“在2016年,财富500强85%企业将无法利用大数据获得竞争优势。”
Teradata的高级副总裁Tasso Argyros表示:传统商业智能是从一个明确定义的问题开始,对于大数据发现,你有一个起点,但它不是一个业务问题,它是一个业务目标。问题在于你不知道要问什么问题或要使用什么数据,只是说’看这些数据,让我们开始,这通常很容易会失败。
所以,问题的答案是“不”,不是每个人都知道他们在做什么,很难制定出高效使用大数据的策略。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30