京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据技术与数据分析有哪些趋势和创新
伴随着大数据技术与数据分析的发展趋势,拥有丰富数据的分析驱动型企业应运而生。下面我们来具体看下大数据技术与数据分析有哪些趋势和创新。
一. 数据驱动创新
如今,数据已成为企业竞争优势的基石。利用数据和复杂数据分析的企业将目光投向了“创新”,从而打造出高效的业务流程,助力自身战略决策,并在多个前沿领域超越其竞争对手。

二. 富媒体数据分析呼唤先进技术
如果没有合理分析,大部分数据毫无用处。而大数据和大数据分析又会带来哪些机遇呢?国际数据公司(IDC)预测,2015年,富媒体(视频、音频和图像)分析将至少扩大两倍,并成为大数据以及分析技术投资的关键驱动力。富媒体数据分析需要先进的分析工具,这为企业提供了重大的市场机遇。以针对电商数据进行图像搜索为例。对图像搜索结果的分析要准确,且无需人工介入,这就需要强大的智能分析。未来,随着智能分析水平的不断提升,企业将获得更多机遇。
三. 混合部署是未来趋势
IDC预测,未来5年,在基于云的大数据解决方案上的花费将是本地部署解决方案费用的4倍之多,混合部署将必不可少。IDC还表示,企业级元数据存储库将被用来关联云内数据和云外数据。企业应评估公共云服务商提供的产品,这有助于其克服大数据管理方面的困难:安全和隐私政策及法规影响部署选择;数据传输与整合要求混合云环境;为避免出现难以应付的数据量,需构建业务术语表并管理映射数据;构建云端元数据存储库(包含业务术语、IT资产、数据定义和逻辑数据模型)。
四. 预测分析必不可少
当前,具有预测功能的应用程序发展迅速。预测分析通过提高效率、评测应用程序本身、放大数据科学家的价值以及维持动态适应性基础架构来提升整体价值。因此,预测分析功能正在成为分析工具的必要组成部分。
五. 大数据创造更多利润与价值
越来越多的企业通过直接销售其数据或提供增值内容来获利。IDC调查表明,目前70%的大公司已开始购买外部数据。到2019年,这一数字将达到100%。因此,企业必须了解其潜在客户重视的内容,必须精通包装数据和增值内容产品,并尝试开发“恰当”的数据组合,将内容分析与结构化数据结合起来,帮助需要数据分析服务的客户创造价值。
六. 认知计算打开新世界
认知计算是一种改变游戏规则的技术,利用自然语言处理和机器学习帮助实现自然人机交互,从而扩展人类知识。未来,采用认知计算技术的个性化应用可帮助消费者购买衣服,挑选酒,甚至创建新菜谱。
七. 复合型数据分析人才之争
很多企业都希望将业务知识与业务分析结合起来,但很难找到复合型数据分析人才。特别是大企业对此感触颇深。随着企业不断在内部加强技术的使用,对复合技能的需求变得越来越明显。业务知识和分析技能的结合对速度驱动型企业非常重要,这有助于企业深入理解业务驱动力以及相关数据,从而更快地将商业洞见转化为行动。
八. 物联网推动实时分析发展
预计物联网未来5年的复合增长率将达30%。它将以商业驱动者的角色引领企业迈出使用流分析的第一步。物联网引发的数据大爆炸将促进实时分析和流分析的发展,要求数据科学家和主题专家筛选数据,寻找可开发成事件处理模型的可重复性模式。然后,事件处理模型可处理传入事件,将其与相关模型关联,并监测需要响应的实时情况。此外,事件处理不间断,所以要求响应时间尽可能接近于实际时间。事件处理因此成为大数据系统和应用程序中不可或缺的模块。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08