京公网安备 11010802034615号
经营许可证编号:京B2-20210330
有关文本挖掘的14个概念
我们所处的信息时代以急速增长的数据信息收集、储存和转换成电子格式为特征。大量的商业数据以杂乱无章的文本形式储存。
据美林公司(Merrill Lynch)和高德纳公司(Gartner)联合进行的一项调查表明,85%的企业数据或多或少是以无序的方式收集储存的。同时,调查声称这些杂乱无章的数据每18个月增长一倍。
当今商界奉行“知识就是力量”,知识来源于数据和信息,若企业能够高效且有效地挖掘文本数据背后的资源,就能够做出更好的决策。文本挖掘(在文本数据库也称文本数据挖掘或者知识发现)是从大量无结构的数据中提炼出模式(也就是有用的信息和知识)的半自动化处理过程。请注意,数据挖掘是从有结构的数据库中鉴别出有效的、新颖的、可能有用的并最终可理解的模式。在这个有结构的数据库中,分类的、顺序的或者连续型变量构建起记录,数据在这些记录下进行组织。文本挖掘与数据挖掘的共同之处在于,它们都为了同样的目标,使用同一处理方式,不同之处在于文本挖掘流程中“输入”一项是一堆杂乱无章的(或者说是未经整理的)数据文件,比如Word、PDF、本文文档摘录、XML文件等。在大量数据产生的领域,文本挖掘的益处尤为突出。信息提取。通过模式匹配寻找出文本中先定的物件和序列,文本挖掘能够鉴别文本中主要的短语和关系。最常见的信息提取形式大概就是“实体抽取”。命名实体抽取包括命名实体识别(利用现有对域的知识,进行已知实体名称的识别,包括:人、企业、地点的名字、时间表达式以及某些数值表达式)、指代消解(检测文本实体间的同指代和回指代联系)、关系抽取(鉴别实体间的关系)。
话题跟踪。根据用户浏览的文件记录,文本挖掘可以预测用户可能喜欢的其他文本。
总结。文本挖掘可以为读者总结文本概要,节省阅读时间。
分类。文本挖掘能够发现稳当的主题,并归置在预先制定的类别之下。
聚类。文本挖掘可以在没有预先制定的类别时归类相似的文档。
概念衔接。文本挖掘可以鉴别文档的共享概念,从而把相关的文档连接在一起。用户由此可以找到传统搜索方法无法发现的信息。
答疑。通过知识驱动的模式匹配,文本挖掘可以找出问题的最佳答案。
文本挖掘有自己的语言体系,包括多种多样的术语和缩略词。非结构化数据。结构化数据有其预设的格式,常和简单的数据数值(分类的、顺序的或者连续型变量)一同被组织进入记录并储存在数据库。语料库。在语言学中,语料库是一个大型的结构化文本的集合(现在一般是以电子形式储存和处理),用作知识发现的工具。术语。术语是由在一个特定域的语料库中,通过自然语言处理提取的单词或者多词短语。概念。概念是通过人工、统计、规则导向或者多种混合的分类方法,从一系列文档中生成的特征。与术语相比,生成概念需要更高层次的抽象。词干提取。词干提取是将屈折词简化到词干(或者词根)的处理方式。比如,stemmer,stemming和stemmed都来自stem。停用词。停用词(也称为“干扰词”),是在自然语言处理之前或者之后被过滤掉的单词。停用词没有统一的清单,大多数自然语言处理工具将冠词(如a,am,the,of等),助动词(如is,are,was,were等)以及只在上下文中有意义,不具有区分价值的词视作停用词。
同义词和多义词。同义词是在句法上不同(也就是拼写不一样),但是意思一致或者相似的词语。相反地,多义词或者“同形异义词”,是句法上一致,但意义不同(例如bow,有鞠躬、船头、蝴蝶结等多个意思)。
标记化。标记是句子中已分类的文本块。根据功能的不同,与标记对应的文本块被分门别类,这一与意义相关的过程被称为“标记化”。只要对结构化文本有意义,标记可以是任何形式的。
术语词典。术语词典是一个小而专的领域里的术语集合,可以控制从语料库中提取的字词。
词频。词频就是一个单词在某文本中出现的次数。
词性标注。词性标注就是根据单词的意思和它在上下文的用法标记词性(是名词、动词、形容词还是副词)。
形态学。形态学是语言学的一个分支,是自然语言处理的一部分,它研究的是词语的内部结构。
术语-文本矩阵。常用来呈现术语和文本间基于频率的关系,以表格的形式表现,行表示术语,列表示文本,术语和文本间的频率以整数形式填在每个格里。
奇异值分解(也称为潜在语义索引)。是一种将术语——文本矩阵转化到可操作大小的降维手段。它利用一种与主成分分析法类似的矩阵控制法来生成中等大小的术语——文本频率表现形式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12