
数据分析,如何生成你需要的基础数据
想要将数据分析、数据挖掘的作用最大化,数据的完整性总是必不可少的,因此,掌握一些生成基础数据的方法也非常重要。本期文章,我们以医疗场景为例,手把手教你生成基础数据~
我们在从事数据相关的项目过程中,数据梳理、数据整合和数据补全等工作需要占用大量的时间与精力,而进展到数据分析、数据挖掘阶段也对数据的完整性有着苛刻的要求。对于一个统计算法的验证与研究,也同样面临着根据自身业务情景特点,配置数据属性的需求。
今天,我们就简单介绍几种基础数据生产方法,以简化我们的ETL流程,方便大家根据业务定义去生产数据。
本文以面向对象的JAVA语义进行示例。小伙伴们可以按照自己熟悉的各种语言来实现,笔者秉承着逻辑方法高于开发语言选择的思想去发现问题、解决问题。
业务场景:
在医院就诊过程中,系统需要记录我们的基本信息,比如:病案号、姓名、性别、发病时间、体重等。这些数据必须符合客观规律,并且结构化。我们接下来就逐一介绍每种属性的数据生产方法。
1、根据面向对象原则建立一个父类
首先我们建立一个抽象类AttributeValueGenerator,在这个类中声明一个实体entity,并建立get、set方法,此后的每种方法都继承这个父类。
2、定义病案号
病案号是一组规则的、自定义的递增数列,我们可以采用递增的方式产生。定义两个参数:病案号的起始数字、增长规模。
函数如下:
输入参数:
10001为病案号的起始数字、每次增加1。
结果展示:
3、区分性别
我们用一组枚举型的数列填充性别属性。男性、女性的就诊比例根据业务需求自定义,采用按百分比产生随机数的方式实现。
函数如下:
输入参数:
第一个参数为性别、第二参数为出现的概率。
结果展示:
4、发病日期归并
发病日期分布在不同的年份月份日期,需要规划起始日期、截止日期、期间概率,随机生成范围内日期并转换为int型输出。
函数如下:
参数输入:
发病时间在2005年的占27%、在2006年的占73%
结果展示:
5、体重正态分布
一组成年人的体重数据应该根据男女区别对待,并符合正态分布的规律。正态分布数据生成,可以控制期望、方差、起始、截止。
函数如下:
参数输入:
如果是男性,平均值为67公斤、方差为10、40-150公斤之间浮动。
如果是女性,平均值为57公斤、方差为10、40-150公斤之间浮动。
结果如下:
汇总结果展现:
总结
我们可以不停地思考,随时随地的根据项目需要结合数据特点来开发一些属性的生成函数。不要小看这些细节,一旦你需要的时候就可以快速生产了。
所谓:积土成山,风雨兴焉;积水成渊,蛟龙生焉;积善成德,而神明自得,圣心备焉。故不积跬步,无以至千里;不积小流,无以成江海。你说是不是这个道理呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14