
数据分析,如何生成你需要的基础数据
想要将数据分析、数据挖掘的作用最大化,数据的完整性总是必不可少的,因此,掌握一些生成基础数据的方法也非常重要。本期文章,我们以医疗场景为例,手把手教你生成基础数据~
我们在从事数据相关的项目过程中,数据梳理、数据整合和数据补全等工作需要占用大量的时间与精力,而进展到数据分析、数据挖掘阶段也对数据的完整性有着苛刻的要求。对于一个统计算法的验证与研究,也同样面临着根据自身业务情景特点,配置数据属性的需求。
今天,我们就简单介绍几种基础数据生产方法,以简化我们的ETL流程,方便大家根据业务定义去生产数据。
本文以面向对象的JAVA语义进行示例。小伙伴们可以按照自己熟悉的各种语言来实现,笔者秉承着逻辑方法高于开发语言选择的思想去发现问题、解决问题。
业务场景:
在医院就诊过程中,系统需要记录我们的基本信息,比如:病案号、姓名、性别、发病时间、体重等。这些数据必须符合客观规律,并且结构化。我们接下来就逐一介绍每种属性的数据生产方法。
1、根据面向对象原则建立一个父类
首先我们建立一个抽象类AttributeValueGenerator,在这个类中声明一个实体entity,并建立get、set方法,此后的每种方法都继承这个父类。
2、定义病案号
病案号是一组规则的、自定义的递增数列,我们可以采用递增的方式产生。定义两个参数:病案号的起始数字、增长规模。
函数如下:
输入参数:
10001为病案号的起始数字、每次增加1。
结果展示:
3、区分性别
我们用一组枚举型的数列填充性别属性。男性、女性的就诊比例根据业务需求自定义,采用按百分比产生随机数的方式实现。
函数如下:
输入参数:
第一个参数为性别、第二参数为出现的概率。
结果展示:
4、发病日期归并
发病日期分布在不同的年份月份日期,需要规划起始日期、截止日期、期间概率,随机生成范围内日期并转换为int型输出。
函数如下:
参数输入:
发病时间在2005年的占27%、在2006年的占73%
结果展示:
5、体重正态分布
一组成年人的体重数据应该根据男女区别对待,并符合正态分布的规律。正态分布数据生成,可以控制期望、方差、起始、截止。
函数如下:
参数输入:
如果是男性,平均值为67公斤、方差为10、40-150公斤之间浮动。
如果是女性,平均值为57公斤、方差为10、40-150公斤之间浮动。
结果如下:
汇总结果展现:
总结
我们可以不停地思考,随时随地的根据项目需要结合数据特点来开发一些属性的生成函数。不要小看这些细节,一旦你需要的时候就可以快速生产了。
所谓:积土成山,风雨兴焉;积水成渊,蛟龙生焉;积善成德,而神明自得,圣心备焉。故不积跬步,无以至千里;不积小流,无以成江海。你说是不是这个道理呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09