
数据分析,快比大更重要
人人都在讲大数据,数据越大,就越有价值吗?在大数据环境下,我们需要把大叔据做成小数据,数据分析采更有商业价值。
我觉得大数据本身没有任何意义,数据对我们来说就是硬盘存在电脑里面,越大硬盘越多成本越高耗电量越狠。
数据分析的5个步骤
数据本身之后必须要讲一下分析。什么是分析?
我们可以分成几个步骤的话有五个步骤:第一步是必须要理解以前发生的这件事,历史上发生过什么事,第二步明白历史上为什么会发生这件事,第三步目前当下正在发生的什么事,第四步未来预测将要发生什么事情,第五步就是改变未来。
在数据分析上,能够做到第四步的预测就已经非常厉害了。不过,在实际商业价值的产出来说,第一步到第四步基本的商业价值是零。假如我预测Simon今天早上会吃饭,明天早上坐飞机回美国,这个根本没有问题,因为Simon今天晚上肯定会吃饭,美国肯定要回,没有任何价值。我们需要的是要把未来变得更好,这才是分析本身产生价值最重要的一环。
在上图中,我们还容易发现,从第一到第五步之间复杂程度显著增加了。一个好的分析师能改变未来,而一般的分析师能改变现在,差一点的分析师连过去都不知道。
数据分析,快比大更重要
实际上数据在过去的几年增长了不同的阶段,以Linkedin相关的数据为例:第一步就是交易数据,以往大家都用兆字节来表示来展示;第二步是CRM,在美国企业里面讲营销、销售,一个人到底是谁,他在哪里住,大约月收入多少钱,在什么公司,这些数据我们叫GB来衡量;再下一步就是网络数据,电子商务的网站,淘宝或者阿里是完全不同的级了,普通的互联网公司,数量级是TB来衡量;第四步就是社交网络数据,推特、脸谱为首的这些社交网络数据,他们产生的数据更大了。
很多人都讲大数据真大,越大越有价值,但真如此吗?大数据背后,大就是慢,就是复杂,就是成本提高,就是没有效率。中国的孙子兵法讲到兵在精不在多,数据再大没有意义也是没有完全没有价值的,所以我们要把大数据做成小数据。
在商业数据分析中,我们要强调速度。为什么要讲速度呢?刚才品觉已经跟大家分享了,在数据本身我们讲3V,本来说就是速度的体现,我讲的速度不是数据存储的速度,而是商业需求的速度,商业需求速度在今天互联网出现以后变成了100亿倍的增长,以前的话比如说像姜子牙做决策的话可能得思考一年,姜子牙思考了70年最后遇到了周文王,现在不一样,现在每个人需要作出非常非常迅速的决策,非常多的决策,每个人都需要决策,这就要求我们在速度上要跟上商业的发展。所以说,兵法里面也讲了一句话,兵贵胜不贵久,就是越慢越没有价值,越快越有价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14