京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅议工业大数据分析的方法论
人们常说,工业大数据是用来挖掘价值的。但更关键的是:价值应如何被挖掘?
我曾经在多个场合申明:“大数据用到工业,特点是对可靠性要求高,而取得可靠性的难度大。” 这个矛盾是个拦路虎,一定要解决才行。为了解决这个矛盾,我再次提出:“知识首先存在于人的脑子当中,需要用数据去雕琢、证伪、修正——而不是强调从数据里面发现新知识 ”——这与商务大数据是不同的。

我的这个观点有个潜台词:人脑中的知识是模糊甚至是错误的,这才需要去雕琢和证伪。其实,人脑中的多数认识是正确的;但可以挖掘价值的地方,却往往是模糊的、甚至是错误的。事实上,大数据创造的价值是通过修正人的认识中的不足和偏差来实现的。
人脑中的这些模糊认识,发生在什么情况下呢?
一种情况是受部门利益或流程标准的限制。我们知道,组织大到一定程度,就要划分成若干部门;机制复杂到一定程度,就要流程化、标准化。这些都是促进生产力发展的。但是,这些事情又会制约信息的流动和科学决策,从而容易形成与组织利益不一致的个人和部门利益。同时,“标准”和流程的缺陷与不足,让一些价值损失“合法化”,难以从组织整体的高度优化决策。认清事实,就便于我们创造系统的价值。
经验主义、教条主义、官僚主义与唯命是从,也容易让人形成模糊甚至是错误的认识。早在10多年前,我就意识到: 在创新过程中,需要强调价值创造。强调价值创造的原因,是为了避免误入歧途——离开具体的背景,片面追求好的指标。但最近却越来越感到:这个口号正在误导一些企业。在这个口号的引导下,间接创造价值、系统创造价值都被压制了;与风险同在的价值被压制了;算不清楚收益的工作被压制了;长远的价值被压制了。其实,错的不是口号,而是简单地理解这些口号。语言的表现力是有限的;再明确的语言,到了蠢材那里都会被误解。而唯命是从、经验主义、教条主义、官僚主义,就会让人变蠢。有个段子形象地表达了这种现象。市领导到公园考察:“那些多些绿化那就更好了”于是,园长让人运来了一顿盐(把‘绿化那’听成‘氯化钠’)堆在公园里。这个段子看似好笑,在很多地方其实非常接近现实。
还有人认为:系统的价值损失不大,就不重视这些问题。我却觉得,系统价值其实很大,但主要是被掩盖掉了。另外,考虑到很多制造企业的利润率也只有1%~2%,能把小的方面优化起来,利益也是客观的。其实,把局部优化都做好了,整个企业就可能发生质变——这就好比把坑坑洼洼的道路修成了高速公路,司机就可以放心开高速了。否则,你会花费太多的成本来预防“异常”。
数据如何才能起到上述作用?
老大说过一句话:打铁还需自身硬。本人也有个对应的观点:数据的力量来自于真实和科学。这句话的含义是:人们在推进数字化的时候,常常被认识水平和局部利益所绑架、被政绩观绑架,使得数据不具备科学性和真实性。数据不科学,怎么可能用来修正人的错误认识呢?试想,如果真的是“经济增长就靠统计局了”,国家还能搞好吗?英国有位前首相说:“世界上有三类谎言:谎言,弥天大谎和统计数据。”。 搞数据的人,一定要知道:数据是会骗人的。学会不被数据所骗,是数据分析的基本功。
让数据代表科学和真实,其实并不容易。不仅要看到文化和制度的原因,也有技术和认识方面的原因。这里,就需要有方法论的支持。举个例子,希望引发大家的思考:
1、从A地到B地,平均2小时。其实,从A地到B地有两条路,一条平均半小时,一条平均10小时,只是很少有人走10小时的那条路。那么,如果你不知有两条路,仅知道“从A地到B地,平均2小时。”,真的能代表科学与事实吗?
2、喜欢打牌的人,50%是骗子。我们知道:一般来说,这句话是错的。但是,如果统计的对象是一群罪犯呢?结果还是有可能的。
这两个例子用来供大家思考,并没有什么答案。爱其实,很早之前,人们就提出“数据质量”的概念。数据质量,不仅是精度问题,更是“适用性”问题——适用的结果,才是真实的结果。在笔者看来,在大数据时代,让我们有更好的条件通过各种对比,判断一个结论的“适用性”:因为可以找到一大堆的案例进行对比——语文老师从小就告诉我们:有对比才会有说明。
但是,对比说明就那么容易吗?当然也不容易,需要找到一种与业务知识相关的知识和逻辑,才能便于对比说明。否则,整出一个“关公战秦琼”也难说。有了业务知识,就能避免这些笑话。如果缺少业务知识,就很难判断一个分析结果是假象还是众所周知的无聊论断——如前所述,在工业过程中,系统复杂性很容易导致“发现”大量的假象和无聊的结果。如果没有起码的业务知识,时间就会都浪费在无聊的“发现”上。
现在回到开头:工业大数据分析的最终目的是挖掘价值。但现实中直接的作用在于展示现实——展示那些头脑中被假象和错误观念蒙蔽的现实。在被蒙蔽的现实中,隐含着改进的空间——这就是金子所在的地方。当然,看到价值并不等于能够解决问题——这些问题很可能需要用智能制造的办法来解决。所以,我设想:工业大数据或许可以作为智能制造的先导。智能制造的第一要义是“信息感知”:用大数据感知真实的现实,岂不正是智能制造的先导吗?孙子说“知己知彼百战不殆”,不也是要先做到“信息感知”吗?克服官僚主义,不要也要靠“信息感知”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06