
浅议工业大数据分析的方法论
人们常说,工业大数据是用来挖掘价值的。但更关键的是:价值应如何被挖掘?
我曾经在多个场合申明:“大数据用到工业,特点是对可靠性要求高,而取得可靠性的难度大。” 这个矛盾是个拦路虎,一定要解决才行。为了解决这个矛盾,我再次提出:“知识首先存在于人的脑子当中,需要用数据去雕琢、证伪、修正——而不是强调从数据里面发现新知识 ”——这与商务大数据是不同的。
我的这个观点有个潜台词:人脑中的知识是模糊甚至是错误的,这才需要去雕琢和证伪。其实,人脑中的多数认识是正确的;但可以挖掘价值的地方,却往往是模糊的、甚至是错误的。事实上,大数据创造的价值是通过修正人的认识中的不足和偏差来实现的。
人脑中的这些模糊认识,发生在什么情况下呢?
一种情况是受部门利益或流程标准的限制。我们知道,组织大到一定程度,就要划分成若干部门;机制复杂到一定程度,就要流程化、标准化。这些都是促进生产力发展的。但是,这些事情又会制约信息的流动和科学决策,从而容易形成与组织利益不一致的个人和部门利益。同时,“标准”和流程的缺陷与不足,让一些价值损失“合法化”,难以从组织整体的高度优化决策。认清事实,就便于我们创造系统的价值。
经验主义、教条主义、官僚主义与唯命是从,也容易让人形成模糊甚至是错误的认识。早在10多年前,我就意识到: 在创新过程中,需要强调价值创造。强调价值创造的原因,是为了避免误入歧途——离开具体的背景,片面追求好的指标。但最近却越来越感到:这个口号正在误导一些企业。在这个口号的引导下,间接创造价值、系统创造价值都被压制了;与风险同在的价值被压制了;算不清楚收益的工作被压制了;长远的价值被压制了。其实,错的不是口号,而是简单地理解这些口号。语言的表现力是有限的;再明确的语言,到了蠢材那里都会被误解。而唯命是从、经验主义、教条主义、官僚主义,就会让人变蠢。有个段子形象地表达了这种现象。市领导到公园考察:“那些多些绿化那就更好了”于是,园长让人运来了一顿盐(把‘绿化那’听成‘氯化钠’)堆在公园里。这个段子看似好笑,在很多地方其实非常接近现实。
还有人认为:系统的价值损失不大,就不重视这些问题。我却觉得,系统价值其实很大,但主要是被掩盖掉了。另外,考虑到很多制造企业的利润率也只有1%~2%,能把小的方面优化起来,利益也是客观的。其实,把局部优化都做好了,整个企业就可能发生质变——这就好比把坑坑洼洼的道路修成了高速公路,司机就可以放心开高速了。否则,你会花费太多的成本来预防“异常”。
数据如何才能起到上述作用?
老大说过一句话:打铁还需自身硬。本人也有个对应的观点:数据的力量来自于真实和科学。这句话的含义是:人们在推进数字化的时候,常常被认识水平和局部利益所绑架、被政绩观绑架,使得数据不具备科学性和真实性。数据不科学,怎么可能用来修正人的错误认识呢?试想,如果真的是“经济增长就靠统计局了”,国家还能搞好吗?英国有位前首相说:“世界上有三类谎言:谎言,弥天大谎和统计数据。”。 搞数据的人,一定要知道:数据是会骗人的。学会不被数据所骗,是数据分析的基本功。
让数据代表科学和真实,其实并不容易。不仅要看到文化和制度的原因,也有技术和认识方面的原因。这里,就需要有方法论的支持。举个例子,希望引发大家的思考:
1、从A地到B地,平均2小时。其实,从A地到B地有两条路,一条平均半小时,一条平均10小时,只是很少有人走10小时的那条路。那么,如果你不知有两条路,仅知道“从A地到B地,平均2小时。”,真的能代表科学与事实吗?
2、喜欢打牌的人,50%是骗子。我们知道:一般来说,这句话是错的。但是,如果统计的对象是一群罪犯呢?结果还是有可能的。
这两个例子用来供大家思考,并没有什么答案。爱其实,很早之前,人们就提出“数据质量”的概念。数据质量,不仅是精度问题,更是“适用性”问题——适用的结果,才是真实的结果。在笔者看来,在大数据时代,让我们有更好的条件通过各种对比,判断一个结论的“适用性”:因为可以找到一大堆的案例进行对比——语文老师从小就告诉我们:有对比才会有说明。
但是,对比说明就那么容易吗?当然也不容易,需要找到一种与业务知识相关的知识和逻辑,才能便于对比说明。否则,整出一个“关公战秦琼”也难说。有了业务知识,就能避免这些笑话。如果缺少业务知识,就很难判断一个分析结果是假象还是众所周知的无聊论断——如前所述,在工业过程中,系统复杂性很容易导致“发现”大量的假象和无聊的结果。如果没有起码的业务知识,时间就会都浪费在无聊的“发现”上。
现在回到开头:工业大数据分析的最终目的是挖掘价值。但现实中直接的作用在于展示现实——展示那些头脑中被假象和错误观念蒙蔽的现实。在被蒙蔽的现实中,隐含着改进的空间——这就是金子所在的地方。当然,看到价值并不等于能够解决问题——这些问题很可能需要用智能制造的办法来解决。所以,我设想:工业大数据或许可以作为智能制造的先导。智能制造的第一要义是“信息感知”:用大数据感知真实的现实,岂不正是智能制造的先导吗?孙子说“知己知彼百战不殆”,不也是要先做到“信息感知”吗?克服官僚主义,不要也要靠“信息感知”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14