
业务分析师和数据科学家有什么不同
数据逐渐成为企业的新一代货币,这也正是公司为了做出更好的决策不遗余力的挖掘数据的潜力的原因。为此,公司需要的是懂得如何从海量数据源中获取需要的数据并以有价值的方式阐述这些数据的专业人士。数据科学家和业务分析师都是这样的专业人士,但决不能将他们混为一谈 ——涉及到决策时他们采取不同的数据分析途径。因为这两种称谓经常被混用,商业分析专家Analytics@American绘制了如下的信息图来阐明两者的差异。
尽管两种类型的专家都是和数据打交道,但他们处理的方式却不一样。这种差异可以归因于他们各自的教育背景。业务分析师接受的教育更多的来自于如商业、人文等领域,从广泛的数据源提取数据并用来评估过去、当前和未来的业务绩效。而数据科学家得益于计算科学、数学和科技的教育背景,在工作中采取统计编程的方式来设计和实现算法。
这些差异也体现在他们在为商业决策提供数据支持时使用的技能上。业务分析师将跨领域的数据分析转变为可用于商业决策的实际资源。相对而言,数据科学家则是做更基础的工作,他们通过在数据集中挖掘数据来寻找有用的信息和编写机器学习算法来为决策制定提供支持。
若想更加深入的理解这两种类型的大数据专家能怎样帮助您的公司定制更好的商业决策,详见如下信息图。
在大数据时代,解析海量难以理解的信息足以引导改变世界的革新。为真正理解这些数据,公司需要各个方面的专业人士,其中包括业务分析师和数据科学家。
他们是谁?
业务分析师:从结构化和非结构化数据源研究和提取有价值的信息并用来解释历史的、当前的和将来的业务绩效,为客户决定最好的分析模型和方法并呈现和解释解决方案。
数据科学家:通过统计编程设计、开发和调用算法而支持业务决策;管理海量数据;可视化数据以辅助理解。
他们拥有哪些技能?
业务分析师和数据科学家都是利用数据来为决策工作提供依据,但他们在利用相同或相似的工具时使用的技巧却不大一样。上面的图表描述了在其学科内获得硕士学位所拥有的技能。
决策制定
业务分析师:将跨领域的数据分析转变为可用于商业决策的实际资源
数据科学家:通过在数据集中挖掘数据来寻找有用信息和编写机器学习算法来为决策制定提供支持
应用问题的解决
业务分析师:定义业务问题,将统计分析转换成数据驱动的商务智能用来提高业务绩效
数据科学家:为可被解决的应用业务问题建立分析基础
数据分析
业务分析师:利用预测性、规范性和描述性的分析方法来研究、解释和可视化原始数据,并使之为客户所用
数据科学家:采用如线性分析方法和多元线性回归方法来管理和组织海量多元数据
分析模型
数据科学家:有经验的统计编程人员利用的语言和工具如SAS、SQL、R、SPSS、Python和Knime
数据库管理
业务分析师:利用类似Teradata、Oracle和Hadoop的工具为各种不同格式的数据,可编码的和不可编码的定义和调整数据库需求
数据科学家:利用类似Teradata、Oracle和Hadoop的工具设计和结构化数据库
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14