京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【R】如何确定最适合数据集的机器学习算法
抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型。
本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各个算法的 R 语言代码,你可以将其保存并运用到下一个机器学习项目中。
适用于你的数据集的最佳算法
你无法在建模前就知道哪个算法最适用于你的数据集。
你必须通过反复试验的方法来寻找出可以解决你的问题的最佳算法,我称这个过程为 spot checking。
我们所遇到的问题不是我应该采用哪个算法来处理我的数据集?,而是我应该抽查哪些算法来处理我的数据集?
抽查哪些算法?
首先,你可以思考哪些算法可能适用于你的数据集。
其次,我建议尽可能地尝试混合算法并观察哪个方法最适用于你的数据集。
尝试混合算法(如事件模型和树模型)
尝试混合不同的学习算法(如处理相同类型数据的不同算法)
尝试混合不同类型的模型(如线性和非线性函数或者参数和非参数模型)
让我们具体看下如何实现这几个想法。下一章中我们将看到如何在 R 语言中实现相应的机器学习算法。
如何在 R 语言中抽查算法?
R 语言中存在数百种可用的机器学习算法。
如果你的项目要求较高的预测精度且你有充足的时间,我建议你可以在实践过程中尽可能多地探索不同的算法。
通常情况下,我们没有太多的时间用于测试,因此我们需要了解一些常用且重要的算法。
本章中你将会接触到一些 R 语言中经常用于抽查处理的线性和非线性算法,但是其中并不包括类似于boosting和bagging的集成算法。
每个算法都会从两个视角进行呈现:
常规的训练和预测方法
caret包的用法
你需要知道给定算法对应的软件包和函数,同时你还需了解如何利用caret包实现这些常用的算法,从而你可以利用caret包的预处理、算法评估和参数调优的能力高效地评估算法的精度。
本文中将用到两个标准的数据集:
回归模型:BHD(Boston Housing Dataset)
分类模型: PIDD(Pima Indians Diabetes Dataset)
本文中的算法将被分成两组进行介绍:
1.线性算法:简单、较大的偏倚、运算速度快
2.非线性算法:复杂、较大的方差、高精确度
下文中的所有代码都是完整的,因此你可以将其保存下来并运用到下个机器学习项目中。
线性算法
这类方法对模型的函数形式有严格的假设条件,虽然这些方法的运算速度快,但是其结果偏倚较大。
这类模型的最终结果通常易于解读,因此如果线性模型的结果足够精确,那么你没有必要采用较为复杂的非线性模型。
1.线性回归模型
stat包中的lm()函数可以利用最小二乘估计拟合线性回归模型。
# load the library
library(mlbench)
# load data
data(BostonHousing)
# fit model
fit <- lm(mdev~>, BostonHousing)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, BostonHousing)
# summarize accuracy
mse <- mean((BostonHousing$medv - predictions)^2)
print(mse)
# caret
# load libraries
library(caret)
library(mlbench)
# load dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.lm <- train(medv~., data=BostonHousing, method="lm", metric="RMSE", preProc=c("center", "scale"), trControl=control)
# summarize fit
print(fit.lm)
2.罗吉斯回归模型
stat包中glm()函数可以用于拟合广义线性模型。它可以用于拟合处理二元分类问题的罗吉斯回归模型。
# load the library
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- glm(diabetes~., data=PimaIndiansDiabetes, family=binomial(link='logit'))
# summarize the fit
print(fit)
# make predictions
probabilities <- predict(fit, PimaIndiansDiabetes[,1:8], type='response')
predictions <- ifelse(probabilities > 0.5,'pos','neg')
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.glm <- train(diabetes~., data=PimaIndiansDiabetes, method="glm", metric="Accuracy", preProc=c("center", "scale"), trControl=control)
# summarize fit
print(fit.glm)
3.线性判别分析
MASS包中的lda()函数可以用于拟合线性判别分析模型。
# load the libraries
library(MASS)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- lda(diabetes~., data=PimaIndiansDiabetes)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8])$class
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.lda <- train(diabetes~., data=PimaIndiansDiabetes, method="lda", metric="Accuracy", preProc=c("center", "scale"), trControl=control)
# summarize fit
print(fit.lda)
4.正则化回归
glmnet包中的glmnet()函数可以用于拟合正则化分类或回归模型。
分类模型:
# load the library
library(glmnet)
library(mlbench)
# load data
data(PimaIndiansDiabetes)
x <- as.matrix(PimaIndiansDiabetes[,1:8])
y <- as.matrix(PimaIndiansDiabetes[,9])
# fit model
fit <- glmnet(x, y, family="binomial", alpha=0.5, lambda=0.001)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, x, type="class")
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
library(glmnet)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.glmnet <- train(diabetes~., data=PimaIndiansDiabetes, method="glmnet", metric="Accuracy", preProc=c("center", "scale"), trControl=control)
# summarize fit
print(fit.glmnet)
回归模型:
# load the libraries
library(glmnet)
library(mlbench)
# load data
data(BostonHousing)
BostonHousing$chas <- as.numeric(as.character(BostonHousing$chas))
x <- as.matrix(BostonHousing[,1:13])
y <- as.matrix(BostonHousing[,14])
# fit model
fit <- glmnet(x, y, family="gaussian", alpha=0.5, lambda=0.001)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, x, type="link")
# summarize accuracy
mse <- mean((y - predictions)^2)
print(mse)
# caret
# load libraries
library(caret)
library(mlbench)
library(glmnet)
# Load the dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.glmnet <- train(medv~., data=BostonHousing, method="glmnet", metric="RMSE", preProc=c("center", "scale"), trControl=control)
# summarize fit
print(fit.glmnet)
非线性算法
非线性算法对模型函数形式的限定较少,这类模型通常具有高精度和方差大的特点。
5.k近邻
caret包中的knn3()函数并没有建立模型,而是直接对训练集数据作出预测。它既可以用于分类模型也可以用于回归模型。
分类模型:
# knn direct classification
# load the libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- knn3(diabetes~., data=PimaIndiansDiabetes, k=3)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8], type="class")
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.knn <- train(diabetes~., data=PimaIndiansDiabetes, method="knn", metric="Accuracy", preProc=c("center", "scale"), trControl=control)
# summarize fit
print(fit.knn)
回归模型:
# load the libraries
library(caret)
library(mlbench)
# load data
data(BostonHousing)
BostonHousing$chas <- as.numeric(as.character(BostonHousing$chas))
x <- as.matrix(BostonHousing[,1:13])
y <- as.matrix(BostonHousing[,14])
# fit model
fit <- knnreg(x, y, k=3)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, x)
# summarize accuracy
mse <- mean((BostonHousing$medv - predictions)^2)
print(mse)
# caret
# load libraries
library(caret)
data(BostonHousing)
# Load the dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.knn <- train(medv~., data=BostonHousing, method="knn", metric="RMSE", preProc=c("center", "scale"), trControl=control)
# summarize fit
print(fit.knn)
6.朴素贝叶斯算法
e1071 包中的 naiveBayes() 函数可用于拟合分类问题中的朴素贝叶斯模型。
# load the libraries
library(e1071)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- naiveBayes(diabetes~., data=PimaIndiansDiabetes)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8])
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.nb <- train(diabetes~., data=PimaIndiansDiabetes, method="nb", metric="Accuracy", trControl=control)
# summarize fit
print(fit.nb)
7.支持向量机算法
kernlab包中的ksvm()函数可用于拟合分类和回归问题中的支持向量机模型。
分类模型:
# Classification Example:
# load the libraries
library(kernlab)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- ksvm(diabetes~., data=PimaIndiansDiabetes, kernel="rbfdot")
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8], type="response")
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.svmRadial <- train(diabetes~., data=PimaIndiansDiabetes, method="svmRadial", metric="Accuracy", trControl=control)
# summarize fit
print(fit.svmRadial)
回归模型:
# Regression Example:
# load the libraries
library(kernlab)
library(mlbench)
# load data
data(BostonHousing)
# fit model
fit <- ksvm(medv~., BostonHousing, kernel="rbfdot")
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, BostonHousing)
# summarize accuracy
mse <- mean((BostonHousing$medv - predictions)^2)
print(mse)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.svmRadial <- train(medv~., data=BostonHousing, method="svmRadial", metric="RMSE", trControl=control)
# summarize fit
print(fit.svmRadial)
8.分类和回归树
rpart包中的rpart()函数可用于拟合CART分类树和回归树模型。
分类模型:
# load the libraries
library(rpart)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- rpart(diabetes~., data=PimaIndiansDiabetes)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8], type="class")
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.rpart <- train(diabetes~., data=PimaIndiansDiabetes, method="rpart", metric="Accuracy", trControl=control)
# summarize fit
print(fit.rpart)
回归模型:
# load the libraries
library(rpart)
library(mlbench)
# load data
data(BostonHousing)
# fit model
fit <- rpart(medv~., data=BostonHousing, control=rpart.control(minsplit=5))
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, BostonHousing[,1:13])
# summarize accuracy
mse <- mean((BostonHousing$medv - predictions)^2)
print(mse)
# caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method="cv", number=2)
fit.rpart <- train(medv~., data=BostonHousing, method="rpart", metric="RMSE", trControl=control)
# summarize fit
print(fit.rpart)
R 语言中还提供了许多caret可以使用的机器学习算法。我建议你去探索更多的算法,并将其运用到你的下个机器学习项目中。
Caret Model List
这个网页上提供了caret中机器学习算法的函数和其相应软件包的映射关系。你可以通过它了解如何利用caret构建机器学习模型。
总结
本文中介绍了八个常用的机器学习算法:
从上文的介绍中,你可以学到如何利用R语言中的包和函数实现这些算法。同时你还可以学会如何利用caret包实现上文提到的所有机器学习算法。最后,你还可以将这些算法运用到你的机器学习项目中。
你的下一步计划?
你有没有试验过本文中的算法代码?
1.打开你的 R 语言软件。
2.输入上文中的代码并运行之。
3.查看帮助文档学习更多的函数用法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27