
大数据助力烟草新营销
近年来,随着信息技术的快速发展,大数据时代已悄然而至,处在转型升级中的烟草行业,如何迎接大数据时代的变革,加快企业发展步伐?本文从数据收集、分析、应用三个方面,对大数据在烟草企业的应用进行初步探讨。
一、构建数据仓库,实现信息集成。大数据是指那些超过传统数据库系统处理能力的数据,数据量可达到PB以上,基本特征是:体量巨大,价值密度低商业价值高,类型多样,处理速度快。有时大数据也指一种技术,包括海量数据分析技术、大数据处理技术、分布式计算等。烟草企业目前建立了很多信息系统,例如专卖系统、营销系统、物流系统等,这些系统积累了大量数据,但由于各个系统相对独立,数据格式、存储形式存在较大差异,难以利用大数据处理技术进行分析,因此需要构建统一的数据仓库系统,将企业内分散的原始数据和来自外部的数据汇集在一起,通过加载、清理、转换,形成一个中心数据集,为企业提供完整、及时、准确的基础数据,它既保持了数据的一致性,又易于被用户访问。同时,这些数据按照业务概念来组织,能够利用相关工具直接从企业信息池中随机地提取、分析数据,例如按客户、品牌等进行分类,为企业管理人员制定策略、开发市场、分析市场、效益评估等管理行为提供数据支持。
二、强化数据分析,挖掘潜在信息。利用大数据能够挖掘用户的行为习惯和喜好,在凌乱纷繁的数据背后找到更符合用户兴趣和习惯的产品和服务,并对产品和服务进行针对性地调整和优化,这就是大数据的价值。目前很多烟草企业只是将信息简单堆在一起,进行基本的统计和查询,而不是将它们作为战略转变的工具,“数据丰富、信息贫乏”的现象比较普遍,制约了经济分析和决策能力。因此,需要有构筑在数据仓库之上的决策支持系统,如数据挖掘和连机分析处理系统,通过对多维数据的切片、切块、旋转、钻取等操作,从大量数据中挖掘出隐含的、先前未知的、对决策有潜在作用的知识和规则,这些规则蕴含了数据库中一组对象之间的特定关系,揭示出一些有用的信息,为战略决策、市场策划、经济预测等提供数据。例如商户在订购卷烟时,留下了订购时间、地址、品牌、型号、数量、金额等信息,企业通过分析这些信息,就能发现某个区域卷烟市场整体特征和走势,各个品牌在时间、地区、消费群体上的销售差异,甚至了解商户的销售、库存、盈利、动销率、断货率等情况,为品牌培育、新品推介、客户维护等活动提供科学依据。
三、加强实际应用,提升经济效益。
大数据能够帮助企业细分客户群,降低营销成本,提升产品销量和客户满意度,在烟草企业未来的发展中,可以从营销、配送、客户、决策等几个方面来加以应用。
1、推进精准营销。卷烟营销系统记录了每个商户以及每笔订单的详细信息,例如商户名称、业态、规模、位置,订购卷烟的品牌、数量、金额等,通过加工和处理这些数据,一是可以准确把握市场需求,提高市场预测准确率,实现按订单组织货源,有效提高客户满意率。二是可以强化货源管理。通过对存销比、库存周转率、市场满足率等指标的监控,确保货源购进管理的科学性、及时性,消除库存积压造成的资金占用产生的浪费。三是可以分析出每个商户的需求偏好,在网上订货系统中进行个性化的推介,如同电商网站“猜你喜欢”一类的板块,使订购过程更加省时省力,提升商户的订购体验。
2、实现精益物流。在对卷烟仓储、分拣、配送等各个环节数据深入分析的基础上,可以构建快速响应、高效运作、精准服务的精益供应链物流体系,通过科学设定各个品牌卷烟的合理库存水平,优化配送线路,消除物流中设备设施空耗、库存过高、人员冗余等各种浪费现象,降低人工成本,使物流服务快速、准时、准确满足客户需求,达到物流服务的低成本、高效率。
3、提升客户关系。利用大数据可有效加强客户管理,增进客我关系。一是增强对客户数据利用的准确性和有效性,对客户进行细致分类,提供更具针对性的服务,提高服务水平。二是挖掘潜在客户、跟踪现有客户、维护重点客户,降低服务成本和客户流失率,通过满足客户的个性化需求,最大化的挖掘潜在购买额度,提高客户的忠诚度和利润贡献率,全面提升企业的盈利能力和竞争力。第三,通过建立预警机制,发现并监控订烟频次和数量明显低于正常水平的商户,防止出现假冒卷烟、乱渠道卷烟等违规现象。
4、辅助经营决策。企业运营过程中的各种信息都是通过数据反映出来的,通过数据分析,可以发现企业运营过程中的规律,从而对未来的生产活动、市场活动等提供科学指导。以往大量数据通过报表等方法进行统计,只能得到一般意义上的信息反映,利用大数据则可以发现许多深层次、直观上无法发现的规律,对整体趋势作出预测,从而帮助决策者针对市场变化的环境,做出快速、准确的判断,科学制定市场计划和发展方向。
总之,大数据是企业未来发展的必然趋势,烟草企业应积极适应这场变革,通过先进的信息技术不断提升生产经营水平和基础管理水平,为深入推进卷烟上水平提供坚实的信息支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14