京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据助力烟草新营销
近年来,随着信息技术的快速发展,大数据时代已悄然而至,处在转型升级中的烟草行业,如何迎接大数据时代的变革,加快企业发展步伐?本文从数据收集、分析、应用三个方面,对大数据在烟草企业的应用进行初步探讨。

一、构建数据仓库,实现信息集成。大数据是指那些超过传统数据库系统处理能力的数据,数据量可达到PB以上,基本特征是:体量巨大,价值密度低商业价值高,类型多样,处理速度快。有时大数据也指一种技术,包括海量数据分析技术、大数据处理技术、分布式计算等。烟草企业目前建立了很多信息系统,例如专卖系统、营销系统、物流系统等,这些系统积累了大量数据,但由于各个系统相对独立,数据格式、存储形式存在较大差异,难以利用大数据处理技术进行分析,因此需要构建统一的数据仓库系统,将企业内分散的原始数据和来自外部的数据汇集在一起,通过加载、清理、转换,形成一个中心数据集,为企业提供完整、及时、准确的基础数据,它既保持了数据的一致性,又易于被用户访问。同时,这些数据按照业务概念来组织,能够利用相关工具直接从企业信息池中随机地提取、分析数据,例如按客户、品牌等进行分类,为企业管理人员制定策略、开发市场、分析市场、效益评估等管理行为提供数据支持。
二、强化数据分析,挖掘潜在信息。利用大数据能够挖掘用户的行为习惯和喜好,在凌乱纷繁的数据背后找到更符合用户兴趣和习惯的产品和服务,并对产品和服务进行针对性地调整和优化,这就是大数据的价值。目前很多烟草企业只是将信息简单堆在一起,进行基本的统计和查询,而不是将它们作为战略转变的工具,“数据丰富、信息贫乏”的现象比较普遍,制约了经济分析和决策能力。因此,需要有构筑在数据仓库之上的决策支持系统,如数据挖掘和连机分析处理系统,通过对多维数据的切片、切块、旋转、钻取等操作,从大量数据中挖掘出隐含的、先前未知的、对决策有潜在作用的知识和规则,这些规则蕴含了数据库中一组对象之间的特定关系,揭示出一些有用的信息,为战略决策、市场策划、经济预测等提供数据。例如商户在订购卷烟时,留下了订购时间、地址、品牌、型号、数量、金额等信息,企业通过分析这些信息,就能发现某个区域卷烟市场整体特征和走势,各个品牌在时间、地区、消费群体上的销售差异,甚至了解商户的销售、库存、盈利、动销率、断货率等情况,为品牌培育、新品推介、客户维护等活动提供科学依据。
三、加强实际应用,提升经济效益。
大数据能够帮助企业细分客户群,降低营销成本,提升产品销量和客户满意度,在烟草企业未来的发展中,可以从营销、配送、客户、决策等几个方面来加以应用。
1、推进精准营销。卷烟营销系统记录了每个商户以及每笔订单的详细信息,例如商户名称、业态、规模、位置,订购卷烟的品牌、数量、金额等,通过加工和处理这些数据,一是可以准确把握市场需求,提高市场预测准确率,实现按订单组织货源,有效提高客户满意率。二是可以强化货源管理。通过对存销比、库存周转率、市场满足率等指标的监控,确保货源购进管理的科学性、及时性,消除库存积压造成的资金占用产生的浪费。三是可以分析出每个商户的需求偏好,在网上订货系统中进行个性化的推介,如同电商网站“猜你喜欢”一类的板块,使订购过程更加省时省力,提升商户的订购体验。
2、实现精益物流。在对卷烟仓储、分拣、配送等各个环节数据深入分析的基础上,可以构建快速响应、高效运作、精准服务的精益供应链物流体系,通过科学设定各个品牌卷烟的合理库存水平,优化配送线路,消除物流中设备设施空耗、库存过高、人员冗余等各种浪费现象,降低人工成本,使物流服务快速、准时、准确满足客户需求,达到物流服务的低成本、高效率。
3、提升客户关系。利用大数据可有效加强客户管理,增进客我关系。一是增强对客户数据利用的准确性和有效性,对客户进行细致分类,提供更具针对性的服务,提高服务水平。二是挖掘潜在客户、跟踪现有客户、维护重点客户,降低服务成本和客户流失率,通过满足客户的个性化需求,最大化的挖掘潜在购买额度,提高客户的忠诚度和利润贡献率,全面提升企业的盈利能力和竞争力。第三,通过建立预警机制,发现并监控订烟频次和数量明显低于正常水平的商户,防止出现假冒卷烟、乱渠道卷烟等违规现象。
4、辅助经营决策。企业运营过程中的各种信息都是通过数据反映出来的,通过数据分析,可以发现企业运营过程中的规律,从而对未来的生产活动、市场活动等提供科学指导。以往大量数据通过报表等方法进行统计,只能得到一般意义上的信息反映,利用大数据则可以发现许多深层次、直观上无法发现的规律,对整体趋势作出预测,从而帮助决策者针对市场变化的环境,做出快速、准确的判断,科学制定市场计划和发展方向。
总之,大数据是企业未来发展的必然趋势,烟草企业应积极适应这场变革,通过先进的信息技术不断提升生产经营水平和基础管理水平,为深入推进卷烟上水平提供坚实的信息支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13