京公网安备 11010802034615号
经营许可证编号:京B2-20210330
没有数据科学家大数据就玩不转了
数据科学家被媒体誉为21世纪最性感的职业,是企业界身价不菲、一将难求的的超级明星,这吓跑了很多准备尝试大数据的企业,实际上没有数据科学家企业一样可以玩转大数据。
如今, 一谈到大数据, 一个普遍的说法就是人才的缺乏。 数据科学家成为了21世纪最性感的职业等等。 哈佛商业评论以及咨询公司麦肯锡的报告都这么说, 再加上数据科学家们自身也乐意被打上这样的标签。
然而, 这种说法, 也让很多准备考虑大数据战略的企业面对大数据的机会望而却步了。 那么, 如果缺少数据科学家, 企业的大数据就真得玩儿不转了吗? 其实也未必。

这里, 当然不是说数据科学家不重要。 相反, 数据科学家这个职业在大数据时代非常重要。 在企业中, 数据科学家的工作, 实际上是联系企业的IT技术和企业所在行业专业知识的纽带。 这样的知识交集上的人才, 本身确实匮乏, 而且, 即使大数据又再大的发展,同时具备这样的知识的人才也还是少数。 然而, 就像我们在计算机行业发展的早期, 不能说因为乔布斯, 盖茨这样的人才太少就制约了行业发展一样。 如今, 街边柯达店的小伙子都能用PS修人像, 而我们也不需要要求柯达店的小伙子具备编写图像处理软件能力。
大数据时代也是一样, Google, Twitter, Facebook那样的大公司, 可以负担得起那些高精尖的数据科学家, 而小企业, 也可以有自己的方式来更好地利用数据。 下面, 以电子商务的公司为例子, 结合数据科学家的工作, 来看看如何能够在企业现有能力范围内进行数据方面的工作。
数据科学家的工作, 大致分为三个方面:
第一, 数据架构的搭建, 第二, 数据模型的建立, 第三, 数据分析。
下面我们来看看那些雇不起或找不着数据科学家的屌丝企业如何玩转大数据:
数据架构的搭建:
首先, 确定企业对数据的需求点。 对绝大部分商业企业来说, 其实每个业务经理都可以告诉你, 他们所需要的数据就是用户行为的数据, 比如, 用户购买行为, 用户对促销或者广告的反应, 用户的社交信息等等, 基本上, 每一类这样的信息, 都可以比较容易的进行归类。
这里的关键, 就是尽量把需要的数据范围进行限定, 这样就可以设定一些简单的数据输入模板, 从而把数据采集和数据整理问题简单化。 这里可以采用一些开源工具, 如Hadoop, Hbase, Hive, Pig等, 把各类数据进行整合。 2/8 原则一般是适用的, 也就是, 80%的进行运营支撑的需求可以来自于20%的数据。 对企业来说, IT技术人员和业务专家共同的协作, 加上一部分外部咨询的帮助, 应该可以搭建一个可用的架构。
数据模型的建立
数据科学家的另一部分工作就是数据模型的建立。 这些模型可能是描述型的模型, 也可能是预测性的模型。 这部分的工作, 也是数据科学家经常被神化的部分。 其实, 这部分工作, 比如说推荐系统, 用户个性化系统等等。 数据科学家所做的大量工作, 在于提取数据的“特征”, 选择合适的模型, 并把它们输入模型, 等待模型输出结果, 再验证, 调整特征的循环。 这部分的工作, 需要第一, 熟悉各类统计模型或者机器学习模型的建立。 第二, 也是更重要的一点, 就是行业知识的了解。 比如一个推荐系统, 最重要的就是把提取用户特征, 提取商品的特征。 如果建模的人对行业知识不了解的话, 那么模型就会很庞大和复杂, 也未必精确。 在这里, 行业的专家, 尽管对建模未必很精通, 他们的市场感觉往往是选择合适特征值的关键。
因此, 对电商企业来说, 招几个学统计的员工(或者外包), 再配合企业内部的行业专家, 也可以建一些适合企业需要的基本模型。 也许没有Google或者Facebook那么地精确, 但是对绝大部分企业来说, 也够用了。 这也不失为是一条在找不到合适的数据科学家(事实上精通本行业又精通建模的人才本来也是凤毛麟角)的情况下的解决之道。
数据分析
数据分析的本质, 是把“数据”变成“信息”, 并从中发现对企业运营有价值的东西。 这其实和任何理科或者工科的“观察 — 归纳 —关联 — 分析 —验证”的研究方法从本质上是一致的。 从这个角度来讲, 行业的专业知识, 在数据分析的时候, 更加重要。
即使你把欧洲大型强子对撞机的数据给数据科学家, 他也发现不了“上帝粒子”。
国内的很多人都会津津乐道 美国百货公司Target通过数据分析给怀孕少女推送婴儿产品的例子,而很多数据分析师或者数据科学家在提到这样的例子的时候, 也在有意无意的进行误导。 其实, 如果没有对用户和产品方面的专业知识, 光靠数据分析或者数据模型, 是很难做到的。 而事实上, 任何机器生成的模型, 要想实用的话, 也都得需要人工在反馈路径上进行一定程度上的调整。
在数据分析领域, 已经有很多的分析工具。 然而, 现在的这些工具, 大多数也还是比较复杂。 需要类似数据科学家或者数据分析师这样的专门人员来使用。 由于企业精细化运营的程度普遍不高。 数据分析师或者是BI的分析师本来就稀缺, 更不要说精通行业专业领域知识同时具备数据分析工具使用能力的人才了。 一个解决的方式, 就是把常用的分析尽量模板化, 数据的整理尽量简化。 尽量采用Excel这样简单大众的分析工具。 归根结底, 企业进行数据分析的目的, 是为了经营服务的。 简单的工具, 在使用,分享和沟通方面都有优势。 这样的解决方案当然不算得完美, 但是, 如果能让具备丰富行业经验的专家以行业经验来弥补数据分析工具的不足, 对企业来说, 也算得上是一个在缺乏数据科学家情况下的可以从数据分析中获益的方式。
在大数据时代, 数据科学家的重要性当然是毋庸置疑的。 不过, 就像网站内容管理系统那样, 大型网站可以雇顶级工程师来自建系统。 小企业也可以利用WordPress这样的系统来满足自身的需求一样。
企业在这个人才匮乏的大数据时代, 利用已有的工具, 结合自身对行业的专业知识, 采取合适的策略, 同样也可以从数据和数据分析中获益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12