
没有数据科学家大数据就玩不转了
数据科学家被媒体誉为21世纪最性感的职业,是企业界身价不菲、一将难求的的超级明星,这吓跑了很多准备尝试大数据的企业,实际上没有数据科学家企业一样可以玩转大数据。
如今, 一谈到大数据, 一个普遍的说法就是人才的缺乏。 数据科学家成为了21世纪最性感的职业等等。 哈佛商业评论以及咨询公司麦肯锡的报告都这么说, 再加上数据科学家们自身也乐意被打上这样的标签。
然而, 这种说法, 也让很多准备考虑大数据战略的企业面对大数据的机会望而却步了。 那么, 如果缺少数据科学家, 企业的大数据就真得玩儿不转了吗? 其实也未必。
这里, 当然不是说数据科学家不重要。 相反, 数据科学家这个职业在大数据时代非常重要。 在企业中, 数据科学家的工作, 实际上是联系企业的IT技术和企业所在行业专业知识的纽带。 这样的知识交集上的人才, 本身确实匮乏, 而且, 即使大数据又再大的发展,同时具备这样的知识的人才也还是少数。 然而, 就像我们在计算机行业发展的早期, 不能说因为乔布斯, 盖茨这样的人才太少就制约了行业发展一样。 如今, 街边柯达店的小伙子都能用PS修人像, 而我们也不需要要求柯达店的小伙子具备编写图像处理软件能力。
大数据时代也是一样, Google, Twitter, Facebook那样的大公司, 可以负担得起那些高精尖的数据科学家, 而小企业, 也可以有自己的方式来更好地利用数据。 下面, 以电子商务的公司为例子, 结合数据科学家的工作, 来看看如何能够在企业现有能力范围内进行数据方面的工作。
数据科学家的工作, 大致分为三个方面:
第一, 数据架构的搭建, 第二, 数据模型的建立, 第三, 数据分析。
下面我们来看看那些雇不起或找不着数据科学家的屌丝企业如何玩转大数据:
数据架构的搭建:
首先, 确定企业对数据的需求点。 对绝大部分商业企业来说, 其实每个业务经理都可以告诉你, 他们所需要的数据就是用户行为的数据, 比如, 用户购买行为, 用户对促销或者广告的反应, 用户的社交信息等等, 基本上, 每一类这样的信息, 都可以比较容易的进行归类。
这里的关键, 就是尽量把需要的数据范围进行限定, 这样就可以设定一些简单的数据输入模板, 从而把数据采集和数据整理问题简单化。 这里可以采用一些开源工具, 如Hadoop, Hbase, Hive, Pig等, 把各类数据进行整合。 2/8 原则一般是适用的, 也就是, 80%的进行运营支撑的需求可以来自于20%的数据。 对企业来说, IT技术人员和业务专家共同的协作, 加上一部分外部咨询的帮助, 应该可以搭建一个可用的架构。
数据模型的建立
数据科学家的另一部分工作就是数据模型的建立。 这些模型可能是描述型的模型, 也可能是预测性的模型。 这部分的工作, 也是数据科学家经常被神化的部分。 其实, 这部分工作, 比如说推荐系统, 用户个性化系统等等。 数据科学家所做的大量工作, 在于提取数据的“特征”, 选择合适的模型, 并把它们输入模型, 等待模型输出结果, 再验证, 调整特征的循环。 这部分的工作, 需要第一, 熟悉各类统计模型或者机器学习模型的建立。 第二, 也是更重要的一点, 就是行业知识的了解。 比如一个推荐系统, 最重要的就是把提取用户特征, 提取商品的特征。 如果建模的人对行业知识不了解的话, 那么模型就会很庞大和复杂, 也未必精确。 在这里, 行业的专家, 尽管对建模未必很精通, 他们的市场感觉往往是选择合适特征值的关键。
因此, 对电商企业来说, 招几个学统计的员工(或者外包), 再配合企业内部的行业专家, 也可以建一些适合企业需要的基本模型。 也许没有Google或者Facebook那么地精确, 但是对绝大部分企业来说, 也够用了。 这也不失为是一条在找不到合适的数据科学家(事实上精通本行业又精通建模的人才本来也是凤毛麟角)的情况下的解决之道。
数据分析
数据分析的本质, 是把“数据”变成“信息”, 并从中发现对企业运营有价值的东西。 这其实和任何理科或者工科的“观察 — 归纳 —关联 — 分析 —验证”的研究方法从本质上是一致的。 从这个角度来讲, 行业的专业知识, 在数据分析的时候, 更加重要。
即使你把欧洲大型强子对撞机的数据给数据科学家, 他也发现不了“上帝粒子”。
国内的很多人都会津津乐道 美国百货公司Target通过数据分析给怀孕少女推送婴儿产品的例子,而很多数据分析师或者数据科学家在提到这样的例子的时候, 也在有意无意的进行误导。 其实, 如果没有对用户和产品方面的专业知识, 光靠数据分析或者数据模型, 是很难做到的。 而事实上, 任何机器生成的模型, 要想实用的话, 也都得需要人工在反馈路径上进行一定程度上的调整。
在数据分析领域, 已经有很多的分析工具。 然而, 现在的这些工具, 大多数也还是比较复杂。 需要类似数据科学家或者数据分析师这样的专门人员来使用。 由于企业精细化运营的程度普遍不高。 数据分析师或者是BI的分析师本来就稀缺, 更不要说精通行业专业领域知识同时具备数据分析工具使用能力的人才了。 一个解决的方式, 就是把常用的分析尽量模板化, 数据的整理尽量简化。 尽量采用Excel这样简单大众的分析工具。 归根结底, 企业进行数据分析的目的, 是为了经营服务的。 简单的工具, 在使用,分享和沟通方面都有优势。 这样的解决方案当然不算得完美, 但是, 如果能让具备丰富行业经验的专家以行业经验来弥补数据分析工具的不足, 对企业来说, 也算得上是一个在缺乏数据科学家情况下的可以从数据分析中获益的方式。
在大数据时代, 数据科学家的重要性当然是毋庸置疑的。 不过, 就像网站内容管理系统那样, 大型网站可以雇顶级工程师来自建系统。 小企业也可以利用WordPress这样的系统来满足自身的需求一样。
企业在这个人才匮乏的大数据时代, 利用已有的工具, 结合自身对行业的专业知识, 采取合适的策略, 同样也可以从数据和数据分析中获益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27