京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代来临 如何挖掘数据中的宝藏
继云计算之后,“大数据时代”这一热词成为媒体争相追逐的焦点。那么,何为大数据,大数据价值几许?大数据时代又会给业界带来哪些机遇和挑战呢?
大数据时代悄然来临
不是我不明白,这世界变化快12000年还是一张软盘打天下的时代,短短十多年光景,硬盘的存储容量已从4GB、16GB、32GB迅速攀升到1TB。原来仅有1.44MB的软盘在当时感觉存储容量还是蛮大的,到现在硬盘容量蹿升至1TB了,反而感觉存储空间捉襟见肘,到底是哪里出现了问题?
大数据!一语惊醒梦中人,大数据时代已经悄然来临。随着社交网络的逐渐成熟,移动带宽迅速提升,云计算、物联网应用更加丰富。更多的传感设备、移动终端接入到网络,由此产生的数据及增长速度迅速攀升。
一项由UnisohereResearch对531名独立Oracle用户进行的调查发现,90%的企业的数据量在迅速上涨,其中16%的企业的数据量每年增长率达到50%或更高。不少企业已经感受到失控的数据增长对绩效造成的冲击,其中87%的受访者将企业的应用程序性能下降归咎于不断增长的数据量。调研机构IDC在2011年6月的报告则显示,全球数据量在2011年已达到1.8ZB,在过去5年里增加了5倍。
1.8ZB是什么样的概念呢?首先从二进制上解读一下,从我们最熟悉的GB开始,1TB(TrillionByte)=1024GB;1PB(PetaByte)=1024TB;1EB(ExaByte)=1024PB;1ZB(ZettaByte)=1024 EB;1YB(YottaByte)=1024 ZB;1BB(BrontoByte)=1024YB。
再来直接形象地形容一下1.8ZB的数据量,如果把所有这些数据都刻录存入普通DVD光盘里,光盘的高度将等同于从地球到月球的一个半来回也就是大约720000英里。相当于每位美国人每分钟写3条Twitter微博,而且还要不停地写2.6976万年,是不是很恐怖?这还不是最恐怖的,IDC还预测全球数据量大约每两年翻一番,2015年全球数据量将达到近8ZB,到2020年,全球将达到35ZB。
所谓的大数据最直白的理解是海量数据,通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费很多时间和金钱。调研机构IDC认为,某项技术要想成为大数据技术,必须满足IBM所描述的三个“V”条件,即多样性(Variety)、大容量(Volume)和时效性高(Velocity)。多样性是指数据应包含结构化的和非结构化的数据;大容量是指聚合在一起供分析的数据量必须是非常庞大的;时效性高则是指数据处理的速度必须很快。
大数据中的大价值
现在有很多通过大数据分析受益的经典案例。在科研民生领域,美国的海啸预警系统一直为人们津津乐道,去年3月11日日本大地震发生后仅9分钟,美国国家海洋和大气管理局(NOAA)就发布了详细的海啸预警。随即,NOAA通过对海洋传感器获得的实时数据进行计算机模拟,制作的海啸影响模型便出现在YouTube等网站。大数据分析在指导人们有效规避自然灾害面前发挥了很大的作用。
而在商业领域,eBay则很好地起到了示范作用。eBay定义了超过500种类型的数据,对顾客的行为进行跟踪分析,每天处理的数据量高达100PB,通过准确分析用户的购物行为,达到了减少广告投入、稳定高端卖家、实现持续增长的目的。
通过上述两个案例不难看到,大数据分析的价值是非常大的。伴随着传统的商业智能系统向纵深应用的拓展,企业也逐渐步入到大数据时代。传统的标准化、结构化的数据只占到15%左右,85%的数据来源于广泛存在于社交网络、物联网、电子商务等中的非结构化数据。这些非结构化数据的产生往往伴随着社交网络、移动计算和传感器等新的渠道和技术的不断涌现和应用。
企业用来分析的数据越全面,分析的结果就越接近于真实,因此,大数据具有很大的商业价值。大数据分析是企业在未来发展过程中必须面对的,大数据分析意味着企业能够从这些新的数据中获取新的洞察力,并将它与已知业务的各个细节相融合。只有那些能够运用这些新数据形态的企业,方能打造可持续发展的竞争优势。
淘金大数据时代
云计算和大数据是2012年IT业界密切关注,且又最为火热的两大关键词,对于嗅觉相当灵敏的IT业界,很多企业早已嗅出了商机。
大数据跟普通数据一样,从产生到处理,再到价值提取,再到最后被消费掉,都有一个过程,每个步骤中都存在着不同的商业需求,目前已经有企业开始深耕细作或正在跑马圈地。
拥抱大数据时代
当大数据时代大步向我们走来的时候,企业有足够的准备来迎接这场革命吗?面对汹涌而来的大数据时代,从目前的态势来看,由于大数据的技术门槛较高,在大数据领域展开竞争的IT公司,大都仍然是在数据存储、数据分析等领域有着传统优势的厂商。而对于其他IT厂商,尽管也意识到了大数据时代的淘金价值,但是无论是土壤、理念,还是技术、市场层面,都还任重而道远。
第一,大数据的急剧蔓延使得企业在存储架构方面逐渐面临着史无前例的考验,由此引发了数据仓库、数据挖掘、商业智能、云计算等应用的一连串连锁反应。
第二,网络带宽急待升级。中国平均网速不到全球一半,带宽过小势必会成为大数据时代的瓶颈,升级带宽是目前面临的最迫切的问题。
第三,无处不在的大数据安全问题。2011年CSDN等网站大规模的数据泄露给业界上了生动的一课,如何保证大数据的安全性是又一只横亘在大数据时代发展路上的拦路虎。要通过技术的、行政的、法律的手段,全面阻击不正当应用和新型知识犯罪。
第四,大数据分析人才紧缺;大数据是海洋,分析工具是轮船,而分析人才则是舵手。只有通过掌握了分析工具的人才指引,大数据分析才能抵达成功的彼岸。目前,大数据分析门槛高,分析人才稀缺是不言的事实。
第五,大数据时代的数据学的理论和方法将改进现有的科学研究方法,形成新的科学研究方法,并且针对各个研究领域开发出专门的理论、技术和方法,从而形成专门领域的数据学,例如行为数据学、生命数据学、脑数据学、气象数据学、金融数据学、地理数据学等。
大数据时代不但会对IT业界甚至会对整个人类社会产生巨大且意义深远的影响,大到国家治理、企业决策,小到个人生活服务,都会因大数据而改变。数据的大航海时代已经来临,唯有扬帆应变才是正途……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第四章 战略与业务数据分析考点43:战略数据分析基础考点44:表格结构数据的使用考点45:输入数据和资源 ...
2026-02-22CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10