
数据价值的4种常见定位
在日常工作中和数据产出中,数据价值的定位分为4种:数据管理、数据日常报表、数据专项挖掘分析、数据驱动。几乎所有企业的数据价值定位都脱离不了这4种,差异只是不同定位间的权重不同而已。
1.数据管理
数据管理工作包括:数据配置管理、数据权限管理、用户权限管理、数据导入管理、数据导出管理。
数据配置管理。数据存储、安全、排除设置,并发控制、进程控制、结构控制等。
数据权限管理。数据保存、新增、删除、更新、备份、合并、拆分、导出、打印等。
用户权限管理。用户新增、删除、重置、过期设置、共享等。
数据导入管理。数据导入格式、时间、条件、规则、异常处理、记录数、来源等。
数据导出管理。数据导出格式、时间、条件、规则、记录数、加密、位置等。
2.数据日常报表
大多数的数据日常报表需要通过技术开发形成报表产品体系,以提供对日常业务的支持。当具有突发性事件或活动时,需要人工整理和汇总报表。完成日常报表后,通过自动发送邮件或短信、在线访问、离线客户端访问等形成接入数据。
根据数据日常报表提供频率和周期的不同,报表可分为日报、周报、月报、季报、半年报和年报。报表的内容因公司需求而异,但基本框架是统计周期内企业各个运营环节KPI陈列、对比和简单分析,目的是通过周期性数据进行业务诊断,发现业务效果的趋势和异常点,为业务的优化执行提供基本支持。
根据数据日常报表支持对象在企业内部分工的不同,日常报表可分为针对决策层的报表和针对执行层的报表。针对决策层的报表侧重于宏观的、整体的效果汇总和结果把脉,借助对比、趋势和主要维度下钻等方式进行初步分析并定位结论和问题点;针对执行层的报表侧重于微观的、个体的效果分析,各业务执行层只针对各自业务维度进行分析,并提供实际可行的操作型建议。
对于数据指标的设定,既要包括公司核心结果指标如利润,又要包括各个业务节点的过程类或间接辅助类指标,以便更全面地评估和定性整体及各业务线的工作结果。
3.数据专项挖掘分析
数据专项挖掘分析是指针对某一特定课题或需求,采用专项分析或长期课题分析的形式对数据进行深入挖掘和分析,以提炼出相应结果或方法论供业务参考或使用。
数据专项挖掘分析是数据发挥价值的重要手段,更是数据辅助支持作用的关键,大多数公司的数据工作意义都来源于此。
为了提高数据工作的针对性,数据专项挖掘通常按业务模块划分,常见的数据专项挖掘分析模块包括市场分析、营销分析、网站分析(运营分析)、会员分析、用户体验分析、销售分析、移动分析、O2O分析等。不同分析模块课题依业务需求而定。
4.数据驱动
数据驱动是真正让数据从辅助角色转变为决定角色的唯一方式,但数据驱动通常在其他数据支持体系建立并完善后才进行考虑。
第一,数据驱动需要成熟的数据方法论的支持,这些知识需要通过日常报表、专项挖掘分析等方式慢慢积累,即使外部引入的方法论也需要根据企业环境进行“定制开发”。
第二,数据驱动需要企业内部具有需求环境。数据需要的前期以辅助决策类为主,第一步是“看”数据的需求,即数据报表;第二步是“查”数据的需求,即通过专项挖掘输出数据价值;第三步才是“用”数据的需求,即让数据自己决定业务方向。没有前两步做铺垫,第三步无法实现。
第三,数据驱动需要较大的IT、人力、物力和财力投入,在数据工作前期,尤其在没有见到数据价值产出之前,企业盲目投入的风险性大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14