京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的价值创造:从洞察力到生产力
我们拥有的数据越来越多,然而就数据本身来说是无含义的。AMT认为,从数据—信息—知识—智慧是一个逐步升华的过程。数据本身并不能做任何事情,只有不断从数据中进行分析洞察,将数据转化为信息和知识,并用来解决实际问题,才能真正成为智慧。
因此,不管是大数据还是小数据,没有业务洞察和改进创新都是0-1字符甚至噪声数据。AMT认为,大数据的价值创造就是“从海量数据中获取前所未有的洞察力,通过洞察力来创造生产力的一个过程”。
大数据的价值创造过程
大数据的价值创造过程分为三个步骤:
1)内外部的数据采集处理,积累形成企业数据资产。
2)基于数据的分析和洞察,获取未知的经验。
3)将大数据分析洞察用于推动业务改进和创新。
相对应的,在大数据的产业里面,也有三类角色:第一类,是数据的拥有者,企业自身或者提供数据服务的专业机构;第二类,大数据的技术提供者,包括软件工具提供商和技术服务公司;第三类,叫业务的洞察者或者业务的价值挖掘者,对应的就是AMT所提供的咨询服务内容——作为数据拥有者和技术服务商之间的桥梁,以业务价值为导向,把相关技术和数据相结合,帮助客户实现商业模式创新和价值实现。
我们先以AMT在能源行业的大数据应用案例来说明大数据的价值创造过程。能源行业包括石油、电厂、电网、新能源企业等,是属于重资产密集型行业,大型设备设施的可用率,对企业来说很重要。那在这个行业做大数据应用的典型应用场景,就是用大数据的算法给这些设备计算出其故障概率、风险等级等,通过分析帮助其改善设备可用率。
比如,电力公司需要运营维护大量的变压器和线路等设备,这些设备它会有很多状态数据。本体状态包括温度、振动情况、锈蚀情况、电压、电流等;还有一些环境状态信息,包括周边环境的温度、湿度等,这样的数据在现有的大型企业会有自动采集的传感器来捕捉这些信息;除此之外还有很多人为的操作信息,对设备的开机、关机、对设备进行周期性预防检修、维护性工作、年检工作等。以上所有这些数据都放到我们为其开发的大数据模型里面来,通过大数据的方法计算,告诉客户这3000台变压器设备,可能其中10%是属于高危等级,需要提前去开展预防性的检修、维护或者年检工作,剩下的可能40%是中等危险等级,50%是低等危险等级,这些都是可以通过大数据方法来优化工作的。
要分析设备故障需要有本体状态信息,有环境状态信息,有检维修记录信息,甚至包括外表的天气信息等都要考虑纳入进来,这些问题就需要有行业洞察力、有业务观点的人来解决。分析结果之后,为了解决这些问题,我们应该配合什么样的管理举措,是不是要通过人员的技能提升、绩效考核、通过设备的技术改造等来开展一些工作?这些管理举措的后续跟进,不懂业务的技术服务公司是很难在这块提供价值的。但是对客户来说,这些是更有价值的,这也正是AMT咨询服务的价值所在。
在电信行业也有类似案例:运营商做客户套餐的优化,需要用户大量的日常通话信息、包括区内通话、区外通话,及流量等大量的信息,通过这些信息计算怎么设计出更好的套餐吸引高价值用户。我们通过获取用户行为,把用户的行为模式、消费习惯聚类出来,再去制订营销策略、套餐策略,这样会更有效、更直接、更有针对性。比如说结果得出针对这几类用户我们要开设校园套餐,那校园套餐将来落地的时候要配合宣传活动、配合呼叫中心的配套服务,要配合渠道商的策略,这些在做方案的时候都是需要配套跟上的。
最后总结一下,大数据应用的核心在于分析洞察之后,真正帮助业务的创新和改进,从洞察力到生产力。如果纯粹从大数据的技术和工具出发,就有点舍本逐末了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第四章 战略与业务数据分析考点43:战略数据分析基础考点44:表格结构数据的使用考点45:输入数据和资源 ...
2026-02-22CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10