
数据挖掘对客户进行深入分析
首先看一下数据挖掘在客户分析中的应用,数据挖掘主要应用于两大领域:客户智能和风险管理。客户智能分为数据层、挖掘层和营销层,数据挖掘属于中间这一层,是服务支撑层,为营销提供支持。数据挖掘传统的一些领域,包括客户细分、营销预测、产品关联、实时分析、客户提升、价值分析,以及现在随着大数据技术的兴起,我们会做实时分析,已经有些公司推出了基于文本的分析判断产品。
由于时间关系我主要介绍其中的几个,首先我们来看一下数据挖掘伴随着客户的生命周期是从始至终都存在的,拿信用卡业务来看,客户经历了从客户的捕获到客户的提升,到客户的成熟阶段,当然最后有可能发生客户的流失,完整的生命周期,不同的生命周期有不同的关注点。在下面,我们从数据挖掘的视角可以看到,其中有很多数据挖掘模型可以辅助业务的决策。其中黄色的是客户智能模型,黄色的是风险管理模型。
首先看客户细分,这是传统的客户细分,一般基于人口统计学的自然属性、银行交易信息、持有产品信息、互动反馈信息等等,针对这些进行细分,形成一个不是很深入的结果,可能会形成这样的用户分级。产生需要的,高价值低忠诚用户是蝴蝶,低价值高忠诚的用户是藤壶。最终细分出来的客户,可能是这个客户更深入洞察的角度,很巧跟邵钟飞也有相似的细分类型。所以,只有基于这些精准细分模型,才能给用户提供差异化的营销手段。
营销预测,举个简单例子,比如我有100个潜在客户,其中大概有25个人会对我的营销响应使用我的产品,并带来人均5元的收益。营销成本每人是1元,地毯式营销回报率是25%。在第二代的营销中我们可能会使用一些聚类的技术,营销的回报率可能能达到100%,这只是一个示例。第三代营销中我们可能会做双向预测模型,同时预测响应率和产品使用率,最终可能会收到比较好的效果,回报率要远远超出前两代。
来看流失分析,客户为什么会离开我们这家银行转移到其它银行?波士顿咨询公司做了一个市场调查,主要原因是服务质量不好,价格没有吸引力,产品没有吸引力,以及渠道的不方便因素,等等。同时有些市场调查认为,我获得一个新客户的成本是维持一个老客户成本的5倍,因此我们怎么样才能做好客户的流失分析,怎样才能留住客户?传统的客户流失分析是做事前的预测,以前不叫流失预测叫流失预警,这时你每个月都要想办法挽留这一大批用户,我们是不是要做一些事后分析?看看这些用户为什么会离开,提高自己的软技能和硬技能进行客户的挽留。
我们刚刚结束的一个项目案例,就是来做高端客户的流失分析。这个银行在2011-2012年这段时间的高端客户,流失率在18%左右的水平,同业的平均水平大概在12%左右,所以他认为他们的流失率偏高于同业其它银行。所以他想分析一下,第一,我流失的客户大概是什么样的构成情况,什么样的客户容易流失?第二,他们流失的原因是什么样的?第三,怎么预警挽留这些客户?这些客户中业务包括储蓄、理财、贷款,我们在做分析的时候,因为他不光要分析流失,他还要分析降级,他这里降级是指严重降级,AUM变动要超过两成。我们在里面分析的时候增加了一层,150万,这样让级与级之间的过度,大概一级就是损失150个AUM。
在做分析之前首先会有个思考,客户提供给我们这些基础数据涵盖了哪些内容,包括了人口统计学的属性,AUM的构成,借记卡的卡数、交易次数、交易金额等等这些信息,这和我做流失分析是有差距的,我缺乏一些流失相关的纬度,比如客户在我们银行主要是做什么业务的。客户在降级流失之前的一个月,最后保留的业务是什么。还有,客户降级流失的原因是因为他有消费需求吗?比如要付首付,还是因为更换银行?前两种我们认为:第一种,因为消费的需求,客户对你银行的忠诚度是没有降低的,他很有可能把这个银行作为接下来他首选的银行,提前还款这东西因为是个被动的业务比较特殊,如果只是单纯更换银行的话,这就说明客户对你的忠诚度有所降低。再有,无论是降级还是流失都是一个笼统的概念,客户的降级是短暂的,如果降了级又恢复,流失也有可能降到AUM的1%再恢复,还是有的客户销卡了?所以,要对客户有个全新的认识,当然这里面也认识到有些东西是数据之外的故事,比如这家银行某个月客户经理的流失率是比较高的,带来了客户流失率是比较高的。
首先我们增加了一个纬度,主要业务分类,这里面又分为月度主要业务分类,也就是计算每个月可以分为储蓄类、贷款类、理财类,还有混合类,后两类的客户比例是非常低的,月度的数据可以综合出客户在17个月中主要做的业务。有了客户主营业务的分类以后,我们可以继续来看客户流失的场景是什么,第一个场景就是刚才说的大额的消费、大额的刷卡。储蓄中断,客户的储蓄持续几个月有100万,突然就不见了,他是转移到了其它银行,至于转移到了其它银行做什么事情我们不清楚。理财的转移,在这个客户降级、流失之前,我们猜测这些人多数人去其它银行多数做理财产品。
同样,流失级别不能一概而论,我们会把客户流失严重程度分为从轻到重。所有的客户流失级别里面,大概有一半多的人是没有流失的,级别甚至是有所提高的,有17-18%的人是流失了的客户。再看做什么主业的客户容易流失?贷款里面蓝条是没有流失的,做贷款的客户是最稳定的,这并不是个很低的门槛。做储蓄的人是最容易流失的,因为储蓄转移的成本是最低的,网银现在转移储蓄肯定两块钱就转走了。
我们还可以看一看全部客户的主业分布图,高端客户里有43%的人是做贷款的,发生降级、流失的客户储蓄减少了、贷款增加了,验证了上面的信息。还有一些基础信息,地域中西部地区是最稳定的,36岁以下的客户愿意做的业务是贷款业务,非常稳定,55岁以上的客户储蓄理财的比例是比较大的,因此流失率也是比较高的。
有了以上的一些交叉分析以后,我们重点看了几个场景:一个是理财转移,理财转移在这段时间内给这家银行带来了大概104亿AUM的损失,大概有1/7的理财客户转移了以后有所恢复,也有1/7的客户转移了以后没有恢复。理财转移的客户偏好的产品和其它客户有没有区别?我们做个对比。可以看到转移的期限,左下角使转移和流失的客户更喜欢稳健型的产品。能不能预测一下贷款的余额占总额的百分比到底什么的时候,客户一次性提前还款的可能性较高,我们做了简单这样的统计度,平均的提前还款率是条红线,下面的横坐标是贷款的余额占的百分之比,贷款余额降到25%之后的时候提前还款率是非常高的。
最终,我们对这个银行给出了一些业务上的建议,比如对储蓄类客户推荐更多产品,尤其是提升交叉营销率,提高他的转移成本,其中交叉营销率都是重要的变量,对于理财客户要及时推荐给他符合偏好的产品,利用网银做好产品的衔接与客户挽留。对贷款的客户要做好提前布局,到当时他的贷款余额降到30%左右空间的时候要重点关注,预判到可能发生提前还款的时候,尤其是可以利用网银迅速的做出一些产品的推荐,比如给他推荐一款理财产品,早期的像房贷拿到7折利率的话,现在大概是4.6%左右的利率水平,现在很多银行理财产品都可以达到这一水平,甚至5%以上。有这样的网银推荐给客户的时候,他就要考虑我是不是要提前还款,他如果购买这个理财的话其实实现了双赢,银行留住了客户,这个人也拿到了更好的利率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10