
大数据为什么这么火?一切都是因为转化
大数据这一概念,虽然火了很多年,但是仍然有很多企业,尤其是传统企业,对大数据一知半解,乍一听,以为你是卖数据的。大数据的应用领域很宽泛,拥有数据分析能力的公司也不少,甚至网络时代人人都提大数据,似乎不提大数据就显得没有逼格,然而大数据绝对不是海量数据积累这么肤浅,也绝不仅仅只是拥有上亿用户这么简单。那么问题来了,究竟什么是大数据?大数据到底能干什么?
大数据到底能干什么?
大数据应用于企业给企业带来领域知识,每个行业、细分领域都有自己独特的领域知识,大数据的能力在于,即使你此前从未涉足某领域,也能通过大数据快速获得相关领域知识。当你身处某个行业,大数据则能告诉你目标用户是谁?潜客在哪?产品因哪些缺陷而导致销量不佳。未来应该何时开发新品,何时改进老产品,又何时调整市场策略?通过大数据的解读最终作用于企业提高核心竞争力与利润率。大数据作用于人则能告诉你,疾病隐患在哪?哪个医院更适合你?未来你的兴趣点应该放在哪里?什么才是更适合你的职业规划?那么,大数据又是如何完成对数据深度解析的呢?
对海量数据进行身份识别与关联匹配是挖掘价值的第一步
比邻弘科COO万智华说指出:我们需要对多样性的海量数据源进行清洗。举个例子:给你一个电话号码,你是否知道对方是谁?长相?身材?婚否?收入?需求?这里的社交账号就是一个数据源,仅有一个社交账号或海量社交账号毫无意义。
接下来最重要的工作是身份识别,身份识别简单讲就是将社会个体“人”的各种属性一一关联,关联即关系,万物负阴而抱阳,阴阳相生,万事万物之间都有着千丝万缕的关系,将这种关系一一对应后就可以具象地表述人、事、物,从而运用大数据分析能力达到预测的目的。
以具体行业为例,汽车行业面对的用户群非常庞大,而最终购车行为却反向减少,对于车企而言,通过已购车用户样本分析关联用户的各种属性、标签后,构建三维立体的数据模型,再根据这个模型对应的属性、标签去匹配相应的关联人群。身份识别的意义在于丰满、具象化目标用户、潜在用户,并准确定位他们。
快速捕获与区分刚需用户与潜在用户,完成价值归类
万智华还提到,用户永远是企业发展的命门,通过大数据实现对用户的身份识别与关联匹配,结合到每一个行业,就会产生强关联用户和弱关联用户,探索现在即找到强关联目标用户,他们是强需求、刚性需求。应用于企业营销,你可以去做产品推荐、活动推送,做精准触达,这一部分群体可以马上转化为销售利润,这通常是企业当下重要的诉求之一。
而弱关联则只是表明个体“人”,非强需求,他们作为潜在用户在观望你,并游离在产品周边,如果以传统视角来看,你永远无法触及他们,但在大数据技术下,潜在用户变得具象和清晰,比如你可以知道,他们没有购买产品是因为设计不够炫,或是你的促销点不足以触动他,他们犹豫不决是因为你的定位和他们的认知都不对等。弱关联应用于企业可帮企业对其产品线、营销策略、产品改进、新品上市、价格策略等一系列响应动作,运筹帷幄,掌控时局,进而提升企业核心竞争力,品牌影响力和市场利润,这里就蕴藏着大数据预测未来的力量。
对于数据的清晰、关联,再到用户的定位与挖掘,最终都是为了解决具体的需求,那么在实际应用层面,大数据最重要的价值与意义在哪?
大数据最直接的能力是帮企业提升销售转化,将用户数据快速变现
从企业角度来说,大数据被广泛应用于用户挖掘,销售线索寻找,产品改进,营销推广等等,有痛点才会需要寻找解决方案,比如汽车、金融、母婴等行业,他们的用户往往在一个阶段完成消费,或是产品属于细分领域很难抓取精准用户,又或者市场进入低谷,企业发展急需转型。大数据不仅可以针对企业提供用户挖掘与销售线索,实现销售转化,还可以依据用户画像对企业市场决策提供依据。
大数据通过整合全维度数据实现对用户的精准分析,及时输出有价值的线索信息,抓取有消费需求的热潜客与销售线索实现销售转化,还能扩大营销线索,提高非店面新增潜客线索量。
大数据还能盘活企业自有CRM数据,通过对用户信息补全,让企业全面了解目标用户的需求,并实时激活那些真正有需求的用户,实现转化,让企业CRM原有的沉睡用户真正发挥价值。
大数据通过触媒分析,帮企业重新认识媒体渠道的作用与效果,策划更有效的媒体投放策略,再结合用户的需求分析,以更精准的方式帮企业提升媒体投放的转化率。
比邻弘科的一次奶粉品牌天猫店推广案例中,通过大数据锁定精准目标用户进行触达,最终在一个月时间内,完成6万人进店,4000个购买转化,平均购买转化率8%。其中3600购买用户为新客,当前活动ROI为3,三个月之内新客持续购买,ROI为12。相比传统渠道推广的转化而言,大数据8%的转化率是相当惊人的。这基于对人群的精准锁定,有了大数据,KPI就不是问题。
大数据间接与深层意义在于帮企业探索市场增量
万智华还指出,通常,大数据应用方比较关注是否在当下产生可见的效果。比如对企业而言,通常急于利用大数据带来销售转化与变现,但从宏观来看,虽然可以通过大数据应用获得有价值的销售线索,但这样的数据无法规模化,现有的刚需用户群体会趋于饱和,大多数制造业或传统行业在发展中会遭遇这样的瓶颈:当达到用户规模饱和值时,再往上提升非常艰难,甚至阻挡不住企业销量和利润下滑的趋势。渠道优势等核心竞争力在互联网时代已经不复存在。企业苦思突破点在哪?如何拉动用户需求?这就需要大数据的分析与预测力来精准锁定目标用户,再比如投资,强关联投资的个体是刚性需求,而弱关联的个体则始终只停留在浏览、关注这个层面,那么强关联的个体规模是有限的存量价值,因为不是所有个体都马上有投资行为,而弱关联的个体虽不是刚需但通过策略、市场、运营可以使之向刚需转化。这个基数具有无限大的增长空间,是未来最有潜力可挖的增量价值。
大数据更深层的意义就在于带领企业预测并启发未来无限广阔的增量价值,提高核心竞争力,创造长久价值。大数据服务公司在普及大数据应用业务时,不要把大数据刻意包装得太复杂,让人有种深不可测的感觉,其实大数据就是这么简单,一切都是为了转化!无论是当下变现的转化,还是未来增量市场的慢慢转化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10