京公网安备 11010802034615号
经营许可证编号:京B2-20210330
关联规则挖掘算法在生活中的应用处处可见,几乎在各个电子商务网站上都可以看到其应用
举个简单的例子
如当当网,在你浏览一本书的时候,可以在页面中看到一些套餐推荐,本书+有关系的书1+有关系的书2+...+其他物品=多少¥
而这些套餐就很有可能符合你的胃口,原本只想买一本书的你可能会因为这个推荐而买了整个套餐
这与userCF和itemCF不同的是,前两种是推荐类似的,或者你可能喜欢的商品列表
而关联规则挖掘的是n个商品是不是经常一起被购买,如果是,那个n个商品之中,有一个商品正在被浏览(有被购买的意向),那么这时候系统是不是就能适当的将其他n-1个商品推荐给这个用户,因为其他很多用户在购买这个商品的时候会一起购买其他n-1的商品,将这n个商品做成一个套餐优惠,是不是能促进消费呢
这n个商品之间的关系(经常被用户一起购买)就是一个关联规则
下面介绍一个比较简单的关联规则算法---apriori
首先介绍几个专业名词
挖掘数据集:就是待挖掘的数据集合。这个好理解
频繁模式:频繁的出现在挖掘数据集中的模式,例如项集,子结构,子序列等。这个怎么理解呢,简单的说就是挖掘数据集中,频繁出现的一些子集数据
关联规则:例如,牛奶=>鸡蛋{支持度=2%,置信度=60%}。关联规则表示了a物品和b物品之间的关系,通过支持度和置信度来表示(当然不只是两个物品之间,也有可能是n个物品之间的关系),支持度和置信度定义的值的大小会影响到整个算法的性能
支持度:如上例子中,支持度表示,在所有用户中,一起购买了牛奶和鸡蛋的用户所占的比例是多少。支持度有一个预定义的初值(如上例中的2%),如果最终的支持度小于这个初值,那么这个牛奶和鸡蛋就不能成为一个频繁模式
置信度:如上例子中,置信度表示,在所有购买了牛奶的用户中,同时购买了鸡蛋的用户所占的比例是多少。和支持度一样,置信度也会有一个初值(上例中的60%,表示购买了牛奶的用户中60%还购买了鸡蛋),如果最终的置信度小于这个初值,那么牛奶和鸡蛋也不能成为一个频繁模式
支持度和置信度也可以用具体的数据来表示,而不一定是一个百分比
apriori算法的基本思想就是:在一个有n项的频繁模式中,它的所有子集也是频繁模式
下面来看一个购物车数据的例子
TID表示购物车的编号,每行表示购物车中对应的商品列表,商品为i1,i2,i3,i4,i5,D代表整个数据表
apriori算法的工作过程如下图:
(1)首先扫描整个数据表D,计算每个商品的支持度(出现的次数),得到候选C1表。这里将每个独立的商品都看成一个频繁模式来处理,计算它的支持度
(2)将每个商品的支持度和最小支持度作对比(最小支持度为2),小于2的商品将被过滤,得到L1。这里每个商品的支持度都大于2,所以全部保留
(3)将L1和自身进行自然连接操作,得到候选C2表。也就是进行L1*L1操作,将L1进行全排列,去掉重复的行得到候选C2(如,{i1,i1},{i2,i2}等),C2中的每个项都是由两个商品组成的
(4)再次扫描整个表D, 计算C2中每行的支持度。这里将C2中的每行(两个商品)都当做一个频繁模式计算支持度
(5)将C2中的每项支持度和最小支持度2作比较,过滤,得到L2。
(6)在将L2和自身做自然连接得到候选C3。L2*L2的结果为:{i1,i2,i3},{i1,i2,i5}{i1.i3,i5}{i2,i3,i4}{i2,i3,i5}{i2,i4,i5},{i1,i2}和{i1,i3}的结果为{i1,i2,i3},计算方式为:前n-1个项必须是一致的(就是i1),结果就是前n-1项+各自的第n项(i2,i3)。那么为什么产生的C3中只有{i1,i2,i3},{i1,i2,i5}呢,回头看看apriori算法的基本思想,如果第三个{i1,i3,i5}也是频繁模式的话,那么它的所有子集也应该是频繁模式,而在L2中无法找到{i3,i5}这个项,所以{i1.i3,i5}不是一个频繁模式,过滤。最终结果就是C3
(7)再次扫描整个表D,计算C3中每行的支持度。这里将C3中的每行(三个商品)都当做一个频繁模式计算支持度
(8)将C3中的每项支持度和最小支持度2作比较,过滤,得到L3
由于整个表D最多的项是4,而且只出现一次,所以它不可能是频繁模式,故计算到三项的频繁模式就可以结束了
算法的输出结果应该是;1,L2,L3集合,其中每个项都是一个频繁模式
例如我们得到一个频繁模式{i1,i2,i3},能够提取哪些关联规则?
{i1,i2}=>i3,表示购买了i1,i2的用户中还购买了i3的用户所占的比例。{i1,i2,i3}的出现次数为2,{i1,i2}的出现次数为4,故置信度为2/4=50%
类似的可以算出
{i1,i3}=>i2,confidence=50%
{i2,i3}=>i1,confidence=50%
i1=>{i2,i3},confidence=33%
i2=>{i1,i3},confidence=28%
i3=>{i1,i2},confidence=33%
也就是说,当一个用户购买了i1,i3的时候系统可以将i2一起当做一个套餐推荐给用户,因为这三个商品频繁的被一起购买
但是,通过对算法整个过程的描述,我们可以看到,apriori算法在计算上面的简单例子中,进行了3次全表扫描,而且在进行L1自然连接的时候,如果购物车项的数据是很大(比如100),这时候进行自然连接操作的计算量是巨大的,内存无法加载如此巨大的数据
所以apriori算法现在已经很少使用了,但是通过了解apriori算法可以让我们对关联规则挖掘进一步了解,并且可以作为一个比较基础,和其他关联规则算法做对比,从而得知哪个算法性能好,好在哪里。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27