
想做大数据风控,先问问自己这几个问题
大数据运用于互联网金融是近期一个异常火热的话题。不过细究起来,或许仍然概念性较强,不排除一些发展较好的平台,但从整体情况来看,大数据发展尚不成熟,还处于早期阶段。
想做大数据风控,先问问自己这几个问题!
大数据变现最好的状态是有数据源、能够进行数据挖掘、同时有用户的相关需求。
明略数据金融事业部解决方案专家杨昀举例表示,就像开采油田,基础是具有油田资源,核心是勘测开采需要的设备,加之用户资源需求,这才是一个行业应有的发展状态。
大数据运用于互联网金融是近期一个异常火热的话题。众多互联网金融平台动辄表示业务开展过程中会采用大数据风控手段等。
不过细究起来,或许仍然概念性较强,不排除一些发展较好的平台,但从整体情况来看,大数据发展尚不成熟,还处于早期阶段。
关于互联网金融平台运用大数据进行风控,有几个问题需要理清。
有数据源吗?
利用大数据的基础是具有数据源,从互联网金融平台的角度讲,数据源一直是硬伤。互联网金融自发展之日起看中的就是传统金融服务的空白区,面对的是信用空白人群,同时,P2P平台并没有接入央行的征信系统。
从企业的角度看,都不愿意进行数据共享,数据孤岛问题一直被行业疾呼。从物理上看,平台各自储存、各自维护数据,并不共享。从逻辑上看,平台不同,对数据的理解定义等可能会存在差异,假如共享沟通,其成本也很高。
此前,宜信大数据分享会上,相关人士表示,共享数据也会带来很多问题,时效性、可信度、精确度等都存在差异。
从开展金融业务的核心数据上看,诸入宜信等发展多年的平台,其或许确实具有数据源、具有数据处理能力。
但是成立不久的平台在上述能力方面就要大打折扣。
当然,平台所称大数据风控动辄表示会运用外围数据,并进行多维度挖掘等,不过,外围数据量级大,维度广,相应的噪音也会大,如何挖据数据,分析关联,并得以运用,含金量较高。
总之,数据源,尤其是一手、精确、可信、持续的数据源获取,及其挖掘分析并非易事。
有技术团队吗?养得起技术团队吗?
业内人士表示,从整体上看,大数据行业缺乏人才,BAT等互联网公司、传统科技公司等的大数据人才往往被高薪引走。
大数据业务的开展需要耗费人力物力,基础设施的搭建本来就是投入多、产出周期长的链条。对于小平台来说,基本上没有能力去搭建。
目前很多平台的大数据分析业务都会外包给第三方,毕竟对于那些成立不久的平台来说,难以负担技术、人才等成本。
从这一角度分析,诸多互联网金融平台声称自己有大数据风控团队,这里还是要打个问号的。
另外,从大数据服务平台角度讲,业内人士表示,行业内目前尚缺乏龙头企业。
无论是从互联网金融平台本身还是外部服务平台,大数据行业还需要继续发展。
关键是需求真正萌发了吗?
关于大数据风控这一需求问题,其实很多平台并没有真正意识到其重要性。
不乏有观点表示,互联网金融如P2P领域,很多平台并不懂风控,只是一味地做大规模。
杨昀将目前大数据服务的用户分为三类,即提得出明确需求、具有数据的用户,这部分用户在市场上非常少,同时是有需求、没有数据及并不明确具体需求的用户,这两类用户占据市场绝大部分。
从互联网金融平台用户的特征看,杨昀表示,互金平台的需求具有多样化,不过,很多平台的侧重点在营销获客上,多数情况是利用大数据进行精准营销,他的观点是互金行业尚处于开源节流中的开源阶段,很多平台都将重点都放在获客、提高用户粘性上。
大数据风控的概念很火热,但不需要神化,对于互联网金融动辄以此为由大肆宣传的情况,我们需要具备一定的判断力。
大数据服务更多的是金融业务开展中效率的提升,杨昀认为,其作用并非是颠覆性的,而是对传统业务的改进与完善,当然,目前这一市场正在发展当中,未来空间巨大,不过,道路也长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14