
大数据实现“0”到“1” 要分几步走
大数据有多火?这样的答案可能有千百种,也从反向证明了大数据真的太火,因为所有人都知道。众所周知,在Gartner报告中,常常会看到炒作周期这个词汇。这意味着有很多技术,虽然人人皆知,但是距离实际应用落地还有一段距离,这就是炒作期。
大数据从0到1分几步?
然而,大数据应该过了炒作期,我们更应该关注的是大数据的落地,关注从零到一的过程。正是因为几百TB甚至几PB的数据限制没有任何意义,才让数据的处理过程显得更为重要。
首先我们要分清大数据与传统的统计分析的区别,首先,大数据的体量更大,在大数据分析过程中,也采用全体分析,而非抽样形式;其次,在分析过程中,大数据更注重相关性,而非因果关系;最后,在大数据时代,因为数据的更新速度快,人们更注重效率,而非绝对的精确。
这些变化让大数据不得不面临处理方法的变化。一般来讲,大数据的处理流程有四步,分别是:采集、导入和预处理、统计和分析,然后是数据挖掘。
数据的采集,在大数据处理中一直都是第一步。在生活中可以映射到方方面面,每一次的搜索痕迹、注册信息都是数据,而物联网的发展也将为未来数据的采集提供帮助。而在数据采集过程中,如何处理好峰值将是面临的首要问题,而这就要依靠合理的分流、公有云、两地三中心等IT架构方法来解决问题。
数据传输需要解决峰值过高问题
数据的导入和预处理,常常是与第一步数据的采集合在一起进行,通过数据库来对数据进行集中存储。可以将结构性数据和非结构性数据存储,数据导入过程中,最重要的特点是每秒导入的数据量比较大。
数据处理分四步
数据的统计与分析已经成为近年来的一种新兴职业,收到很多企业的青睐。尤其在可视化分析领域,通过对数据的计算将计算结果用图片等形式类进行呈现,得出一个直观的结论。这样的分析方法与用户的交互性较强,数据的显示体现多维性,同时能够最直观的得出数据特点。
数据挖掘往往是大数据处理的最后一步,数据挖掘往往是已经设定好一个主体,为了找到某个答案而进行分析和计算,从而达到预测的效果。数据挖掘的定义是从海量数据中找到有意义的模式或知识,数据挖掘也成为数据的终极目的。
大数据实现从“0”到“1”要分几步走?从数据的处理来看,这个过程需要经历四步,当然可能有些数据处理过程中将数据采集和导入集中在一起,或者没有预设一个主体进行数据挖掘,都体现了大数据时代的特点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14