
数据挖掘在企业中应用的四种途径
数据激增是当今社会的一大特性,如何有效的利用数据挖掘方法,从海量信息中提取出有用的模式和规律而不仅仅是“望洋兴叹”,已经成为人们迫切的需求。企业应该将数据挖掘视为一大法宝,利用它将数据转化为商业智能,提高企业的核心竞争力。从投资的角度来看,如果对数据研究所支付的费用少于研究成果所带来的价值,数据挖掘就值得去做。
正如修行的省悟过程一样,要将数据挖掘引入公司,并非只有一种途径。我们的最终目的是解决企业的业务问题,为企业提供更大的商机。本文简要介绍了将数据挖掘技术应用到企业中的四种有效途径。
一、购买成熟的模型
如果企业的问题已经有了现成的解决方案,便没有必要再去耗费时间和资金去建立一个新的模型了。这个模型的形式可能是一系列的关联规则,也可能是一个确定了系数的回归模型,或是一个训练好了的神经网络模型——它可以直接应用到实际问题中。我们要做的只是将自己的数据“喂”给它,模型经过自动消化处理,得出一个精简的答案:诸如哪些老客户面临流失的危险?哪些新客户是最有潜力带给公司价值的?
这种方法采用了“拿来主义”,是最节省气力的,不失为一个好办法。美国的银行大都采用了信用评估系统,当客户递交贷款申请后,该系统根据用户填写的一大串资料快速对客户信用风险做出预测。实际表明,该系统能够大大提高工作的效率,而且效果也不会逊于信贷员的经验判断。但是,这种评分机制将众多不同的数据浓缩为一个结果,很多细节上的差别无疑被忽视了——客户信用评分高或低的具体原因没有被体现出来。
另外,这种方便、快捷的方法也极其缺少灵活性:如果使用的条件发生了变化,模型难以随之做出改动。因此,必须要注意使用购买模型的先决条件:你目前的形式包括产品、市场、客户关系等必须和该模型当初建立时的假设是一致的。盲目生搬硬套,势必会产生毫无价值甚至荒谬的结果,一旦不经意的应用,危害就难说了。
二、使用行业应用软件
顾名思义,行业应用软件是为某一行业领域量身定做的。从底层的数据分析处理一直到顶层的交互界面都是结合特定行业的业务流程和专业特色来设计、开发的。虽然它的应用领域比较狭窄,但较之直接购买的模型,它可以更多的融入和结合人的判断,提高了灵活性。而且,相对于通用数据挖掘软件,它能够很好的利用专业领域的各种知识。
目前比较流行的客户流失管理软件,被电信、超市、电子商务等许多不同类型的企业所应用,他们共同的目标是为了提前发现有可能流失的客户群,及时反应,做出相应的挽留措施。此类软件可以结合企业自身的规模、用户、产品、交易额、市场环境、挖掘目标等具体条件来控制和实施数据挖掘的过程。
通常,行业应用软件里嵌入了多个建模的模板,使用向导的方式辅助用户完成模型的建立,然后从中选取最优。其实,这种“最优选择”也只是相对的,因为辅助建模的过程是僵硬的,它无法完成数据挖掘中最重要的部分,包括正确理解和定义商业问题、将有用的数据挑选出来转换为潜在的信息、对建模结果进行理性的解释和评价。
固然,这类软件采用了专业领域的表达方式和解决特定问题的用户界面,从而易于理解而且自动性高,使实施的过程变得相对简单。但是,如果你的企业拥有更加复杂的数据和更加具体的挖掘目标,就需要采用更加高级的数据挖掘方法了。
三、聘请专家实施项目
他山之石,可以攻玉。如果数据挖掘并非只是为了解决眼前的问题,而是着眼于企业长远的成长;如果企业的数据来自众多系统,格式复杂也并非纯净;如果不明确如何利用挖掘的成果创造新的商机;如果企业内部的成员没有足够的能力保证项目的顺利实施——此时,聘请外部专家来引导数据挖掘项目走向成功,才是明智的选择。
你可以联系数据挖掘软件销售商(诸如SAS、SPSS、Miner等),邀请数据挖掘工程师带着功能强大(操作同样复杂)的数据挖掘软件来到企业,将他们的专业知识应用到企业的数据挖掘过程中;你也可以带着企业的数据到高校或咨询公司等数据挖掘中心,利用他们的软件和硬件,和他们一起工作。
如本文开始所言,数据挖掘的过程绝非一蹴而就,而是如同僧人的修行省悟,可能漫长而反复。建模方法千变万化,而数据静静的呆在那里,十足一副以不变应万变的姿态。这里有条条大路,但并非都能通向罗马,为了找到最有效的模型,我们通常需要反复检验,做出选择。一般存在以下几个决定性的步骤需要放慢脚步,仔细考察:首先,根据现有的人力、物力选取建模工具;其次,根据数据的特点对模型分类,制定标准来拆分数据,从而建立不同的模型;然后,调整参数,从决策树、神经网络等算法中选取最有效的建立最终模型;另外,建模过程中要具体问题具体分析,有效的抽取、清洗、转换、重组数据。
需要强调的是,在这个过程中一定要注意企业人员和挖掘人员之间的沟通和协调,才能将企业积累的商业智慧和挖掘人员的专业知识完美结合。
四、量身定做开发自己的数据挖掘平台
由于商业问题的特殊性,数据挖掘工具并非像某些促销广告所言:“总有一款适合您”。通过考察企业问题的特殊性,对购买软件、聘请专家所需要的投资和挖掘成果应用后可能带来的回报等因素进行综合比较,你也可以考虑开发一个适合自身环境的数据挖掘工具。虽然可能会花去较长的时间,但成功之后,受益久远。这个量身定做的数据挖掘工具可以随时根据企业环境的变化做出修正和调整,并且有坚实的技术支持作为保障。
这类状况在商业范围内比较少见,通常在医药、体育等自身数据差异较大、数据挖掘研究尚不全面成熟的领域使用。主要表现为走进高校,和具有专业知识的导师及其研究生小组互动完成。
以上方法的选择由企业环境所决定,可以选其一,也可以将几种方法捆绑起来,优势互补。最后还要强调两点:第一,并非所有的软件都能完全实现自动化,也并非所有的软件都能取代人的智慧,如果没有专业的数据挖掘技能,即使数据挖掘工具的功能再强大,也很难产生好的结果。所以,必须有数据挖掘领域的专家参与,以人为本,才能保证企业数据挖掘流程沿着安全、有效的轨道进行。第二,企业自身远比外部更了解自己的业务和客户,最好的方法是在企业内部培养数据挖掘骨干人员——只有同时做到精通企业问题和数据分析方法,才能将数据挖掘的效用发挥到极致。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10