
中小企业该如何获得他们所需要的大数据技术
大数据分析可以极大地改变企业经营的方式,但到目前为止,主要受益者仍是大型企业。中小企业尚未获得可观的收益。为什么大数据的优势在很大程度上并未在中小企业中显现?这些企业应该做些什么?
驱动大数据大肆宣传的是哪些因素?
宣传,通常用于吸引客户,可用在广告中,或者可以贩卖数据。如果你发现大数据是面向客户的,那么你遇到的将会是非结构化数据,你将用到NoSQL、Hadoop等技术。事实上,我们发现80%的企业处理的数据不到两个pb,60%的企业表示他们只是想使用现有数据进行更好的分析。这些情况使用普通的分析技术就能搞定。
CIO们在大数据变革中扮演何种角色
你看到许多公司在营销和销售方面设置了一个首席营销数据官的职位,该职位的人真正理解(他们的)功能需求。这也许是一件好事。对于你想看的数据,你必须有一个可操作的数据视图。CIO没必要学习这些技术。但你仍然需要一个熟悉Hadoop或NoSQL的人,你需要数据分析师和科学家,他们指出想要分析的数据来源。这些技能与CIO拥有的并不同。它们更加系统,且建立在假定基础之上,这是博士才能做的事嘛。
中小型企业没有跟上大数据变革的潮流,那么中小企业如何从传统BI和数据仓库过渡到大数据时代?他们要做些什么才能获得大数据带来的好处呢?
大多数中小企业不想亲力亲为。他们可能也不想引进新的数据科学技术。那他们适合云环境。如果他们要收集客户的所有行为与数据,他们也没有能力存储呀。那他们会租用云环境中的系统(如智云通CRM系统BI工具)。但是不能一概而论,如果要租用云设施,企业中还要有人熟知所需数据的来源以及如何使用这些数据,你仍然需要在内部进行技术培训。这是一个待解决的问题。服务或应用程序已经以打包的形式提供给中小企业了,但由于上述原因的存在,这些企业在未来几年还将遇到诸多困难。如果你没有所需的资源和相应的技术,问题将一直存在。
中小企业应该如何获得他们所需要的大数据技术?
最高的IT薪水排行中,十个中有九个出自所谓的大数据领域。成本昂贵,大公司希望吸纳更多的大数据人才。这并不那么简单,因为这里边涉及到一个累积的问题。CIO不确定其是否要处理此类事务,你不具备内部处理能力,所以你想使用云技术,但企业内部仍然需要具有一定的专业知识。这颇具难度,是中小企业面临的最大阻碍。你发现很多年轻人前赴后继投身大数据行业,但是对积累的技术进行过滤还需要一些时间,而且你会发现人才费用并不贵。但是,数据可视化 给大数据分析故事一个出口。
对于这些高成本的技术和高薪员工,中小企业的ROI可观么?
百分之六十的公司只是想在现有数据上进行更好的分析操作。Target和沃玛特投入大量的资金来分析客户数据,但客户和这些公司的交互方式并没有发生翻天覆地的变化。定价或销售等方面也是如此。我们知道,收集客户数据来提高销售对于企业来说是一个全球性的趋势。即便如此,你也没见到什么颠覆性的变革。他们并没有增加60%的销售额。但是却产生了相关的成本,我怀疑是否能够轻松将大数据转换成销售额。销售和营销的人会说““没问题,你可以的,”有这个可能,但这并不像将资源从打印机和电视转移到网站和移动端那么简单。我不认为销量会增长,也许只是定制化变得更有效率,但我不认为生产力会有颠覆性变化。这一点在小公司上更为明显。但是,大数据有它核心的价值,这也不可忽略。
小公司应该更加关注数据仓库和业务智能报表?
基本的BI和分析工具对于中小企业来说是非常好的。通过它们,企业能够从数据中得到其真正需要的东西。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14