京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据行业应用拉开新时代序章
大数据的挖掘就像是在给用户画像。先搜集用户在网络上留下的痕迹也就是数据,然后通过技术处理对数据进行分析,得出用户的特征,洞察用户的喜好,将用户的画像渐渐越描越细。
事实上,大数据在各个行业的应用已是遍地开花,下面D1net小编将带领大家走进以下几个行业,看看它们是如何挖掘大数据价值的。

金融行业
银行的大数据应用比较广泛,主要集中在数据库营销、用户经营、数据风控、产品设计和决策支持等应用场景。现阶段,大数据在银行的商业应用还是以其自身交易数据和客户数据为主,外部数据为辅;描述性数据分析为主,预测性数据建模为辅;经营客户为主,经营产品为辅。
典型的案例有:新加坡花旗银行基于消费者的信用卡交易记录,针对性地给他们提供商家和餐馆优惠;摩根大通银行利用决策树技术,预测了按揭申请人的未来还款行为,由此极大降低了放贷风险,并增加了6亿美金的利润; ZestFinance推出基于大数据分析的收债评分(Collection Score),为汽车金融、学生贷款、医疗贷款提供一种新的评分系统,使得“一切数据皆信用”成为可能。
零售行业
目前的某些领先零售,从顾客走进商店那一刻起,其脚步、视觉移动、选择、对减价的反应,已经被密切监控。通过这一分析,商店能够决定是否需要做出改变以提高销售,例如:商品摆放位置、促销活动、装修风格、更多销售员等。
商店在不停地分析数据与顾客的会员卡的关联。例如高端零售商Neiman Marcus就建立了行为分类体系和多级会员奖励制度的体系,并将两者结合起来,来激励最富裕、最具长期价值的客户购买更多高利润率的产品。
顾客的购物清单同样可以挖掘出大量的个人信息。塔吉特公司通过对孕妇的消费习惯进行测试和数据分析,由此来判断出哪些顾客是孕妇,甚至估算出她们的预产期,在最恰当的时候给她们寄去最符合需要的优惠券。
能源行业
以丹麦的维斯塔斯风能系统(Vestas Wind Systems)为例,他们运用大数据,分析包括PB 量级气象报告、潮汐相位、森林砍伐地图、公司遍及全球的2.5万多个受控涡轮机组发回的传感器数据,来确定涡轮发电机最理想的位置,从而优化风力涡轮机布局,提高风电发电效率。这些以前需要数周时间完成的分析工作现在只需不到1 小时即可完成。正是这样一套信息处理体系赋予了公司独特的竞争优势,在提升自身营收的同时,帮助客户提实现投资回报的最大化。
对于能源行业而言,微观选址、预防性维护和绩效评估尤为重要,利用大数据可以对风电场进行全生命周期的管理和优化,使能源不断朝着预防性、预测性的方向发展,实现最高效的能量输出。
电信行业
电信作为一个垄断行业,市场的渗透率通常很高,具有潜在价值的大量承接关系数据每天以客户位置、设备交互、购买行为、在线状态、社交地图和人口统计数据的形式从运营商这里大量流过。因此,运营商具备了解客户的潜力和开发优势。西班牙电信公司Telefonica Dynamic Insights推出“智慧足迹”业务,可对某个时段、某个地点人流量的关键影响因素进行分析,并将分析结果提供给政企客户。比如可为市政委员会统计、预测各种场景下的人流量;为零售商的新店设计和选址、促销方式设计、与客户反馈等提供决策支撑。
运行商利用大数据技术,一方面可以描绘更丰满、精细的客户画像,另一方面还可以量化分解客户信息,识别客户特征与习惯偏好,对客户手机可能出现的故障、换机行为等作出预测,为客户提供定制化的服务,优化产品、套餐和定价机制,提升客户体验与感知。
医疗行业
早期,大部分医疗相关数据是纸张化的形式存在,比如官方的医药记录,收费记录,医生、护士手写的病例记录, X光片记录,磁共振成像(MRI)记录等。随着大数据时代的到来,各种医疗数据都在不同程度上向数字化转化。
有效的整合和利用数字化的医疗大数据对医疗行业的发展有显著的好处。庞大、共享的数据库能提供更准确的病史、药物反应、临床操作等,作出更好地匹配个体患者的病症的治疗方案。各种健康可穿戴设备的出现,也使得血压、心率、血糖,心电图(EKG)等的全面、即时、远程的个人监测成为可能。比如一家名为 Blue Spark 的科技公司已经生产出能 24 小时实时监测体温的新型温度计贴片 temptraq。
交通行业
车多、拥挤与出行之间似乎有难解的矛盾,解决方法在于如何依靠技术和规划来最大限度地让整个城市得以有效运转。这就需要大数据的采集与分析,通过精准运算,才能提高出行效率,达到事半功倍的效果。
WNYC开发的Transit Time NYC通过开源行程平台获取数据,将纽约市划分成2930个六边形,模拟出从每一个六边形中点到边缘的时间,最终建模出4290985条虚拟线路。用户只需点击地图或者输入地址就能知道地铁到达每个位置的时间。
实时交通数据采集商INRIX-Traffic的口号是永不迟到,通过记录每位用户在行驶过程中的实时数据例如行驶车速,所在位置等信息并进行数据汇总分析,而后计算出最佳线路,让用户能够避开拥堵。
教育行业
在教育行业,在教与学的过程中,也蕴藏着有价值的海量大数据,怎么有效挖掘、分析和利用这些海量数据来促进学员、教师、教学管理者全方位互动与了解,优化教学是其主要目的。其应用意义主要是革新教育理念和教育思维、实现个性化教育、重新构建教学评价方式、加强学校基于数据的管理等。
纽约州波基普西市玛丽斯特学院基于Pentaho的开源商业分析平台开发了一个分析模型,通过收集分析学生的学习习惯,例如点击线上阅读材料、是否在网上论坛中发言、完成作业的时长,来预测学生的学业情况,及时干预帮助问题学生,从而提升毕业率;全美有超过50个地区的学校在使用KickUp来对教师进行评估。测评数据来自教师的自查报告及学年内的各项教学结果的反馈,这些数据可以纵向记录教师的成长历程,提出有待改善的地方。
一千个读者就有一千个哈姆雷特,同样大数据领域的价值创造机会也因行业而异。对企业来说,大数据不仅仅带来了技术和应用模式上的突破,还为商业模式的创新以及企业的转型发展带来了驱动力;对公共服务机构来说,挖掘大数据的潜在价值,解决城市发展问题,完善社会机制,更好地服务于人类社会是其根本意义。
就像望远镜让我们能够感受宇宙,显微镜让我们能够观测微生物一样,大数据正在改变我们的生活以及理解世界的方式,而更多的改变正蓄势待发……
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第四章 战略与业务数据分析考点43:战略数据分析基础考点44:表格结构数据的使用考点45:输入数据和资源 ...
2026-02-22CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10