京公网安备 11010802034615号
经营许可证编号:京B2-20210330
想做数据分析师?先弄懂这10种分析思维吧
一、逻辑思维
逻辑思维即明白价值链,明白各项数据中的关系; 该方法的关键在于明白其中的关系要求你对这项工作要了解、熟悉,要细致和慎密,要清楚充分性和必要性的关系。 实际上也就是指:你需要那些数据?如何获得这些数据?数据之间的关系如何?
二、向上思维
在看完数据之后,要站在更高的角度去看这些数据,站在更高的位置上,从更长远的观点来看,从组织、公司的角度来看,从更长的时间段(年、季度、月、周)来看 ,从全局来看,你会怎样理解这些意义呢?也许向上思维能让你更明白方向。 该思维方法的关键是:建立长远目标、全局观念、整体概念、完整地分析数据,不做井底之蛙。
三、下切思维
数据是一个过程的结果反映,怎样通过看数据找到更多的原因以及隐藏在现象背后的真相,需要我们下切思维,把事物切细了分析,把过程拆分细了分析。此时 关键是要知道数据的构成、分解数据的手段、对分解后的数据的重要程度的了解。也就是说那些数据需要分解分析?这也如同 显微镜原理
四、求同思维
当一堆数据摆在我们面前时,表现出各异的形态,然而我们却要在种种的表象背后,找出其有共同规律的特点。 关键是找到共性的东西进行分析,还要客观。 实际上就如同:现在的整体数据表现出什么问题?是否有规律可行?
五、求异思维
每一个数据都有相似之处,同时,我们也要看到他们不同的地方,特殊的地方 。 这就需要对实际情况的了解,对日常情况的积累,对个体情况的了解,对个体主观因素的分析。 正如:你了解你的下属员工吗?如何帮助她们分析问题,从自身找到解决方案。
六、抽离思维
当你从一个旁观者的角度不思考看待数据时,你往往能发现那些经常让我们迷失方向的细枝末节并没有太多的意义,我们迷失方向,忘记了自己的价值,同时深受情绪困扰。这时,你用用抽离思维更加能够帮助到你。 关键是要用多种分析方法,多角度看问题,不要钻牛角尖,多学习别人的好方法,学会集思广益,发散性思维。 比如说:你的学习能力和方法有效吗?
七、联合思维
很多销售数据,需要我们能站在当事人的角度去思考和分析,这样你才会理解人、事、物。 关键在与多了解当事人的情况,学会换位思考。 比如:你了解你周边的情况吗?你了解你周围的人吗?
八、离开思维
通过数据分析,你发现你处在一个不太有利的地位,那么,此时,你就要有离开思维去替你想办法,离开困境 。 关键是学会自我调节,自我放松。 实际情况如:遇到难解的结,你怎么办?
九、接近思维
怎样达成目标,实现销售增长,这时候你需要接近思维来帮助你 。 关键是多接触你要解决的问题,花时间分析,你要的是方案,不是问题。 实际情况如:你在做选择题还是问答题?责任点在哪?
十、理解层次
问题发现是第一步,要怎样分析问题,找到真正的原因,那么熟练的运用理解层次 。 关键是:你需要熟悉客观环境,员工的能力、行为的规律、他需要什么? 实际情况如:你能够分析到哪一步?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08