
数据分析在淘宝运营中都可以干什么
很多人都在谈数据分析,淘宝从业者们,不管是从老板的角度来看,还是从运营的角度看,也都很重视数据化运营。那么,数据分析在我们日常的淘宝运营工作中都可以干什么呢?每一个数据分析的行为都应该有明确的目标指向,你想要达到什么样的目的!我们看下面这张图:
为什么说他是必学基础?因为我觉得:每一个运营人员在做绝大多数运营决策的时候,都可以有相应的、具体的、实操性很强的数据分析方法,包括数据的收集、整理、分析工具等等。加电商队长微信号:yhtaobao备注:标题,赠送黄金标题打造爆款视频系统实操教程。而这篇分享,就是给大家打下一个基础,看看在我们运营工作中,什么地方是可以做数据分析的。
1. 调研分析
数据化运营的第一个应用场景当然是全面分析,太多的淘宝卖家的思维流程是:有产品——上到淘宝——怎么才能卖好。
而真正的思维流程应该是:淘宝上什么有市场——去做(或者选什么产品)——怎样推到需要的消费者面前。而这个思维流程建立的基础就是全面分析,三个点:
(1)市场分析
做淘宝,第一件事儿就是要选择准备切入的市场,是做市场需求大但竞争激烈的类目,还是做小众但相对竞争比较小的类目。那至少你要综合考虑这几方面的因素吧:
竞争力的大小(这是我多次强调的一个概念)。市场需求量大不代表就一定适合你,如果你是一个实力雄厚的大公司,供应链稳定,资源丰富,那么很显然你应该选择需求量大的。但是如果你是小公司呢?需求量大意味着竞争也会激烈,所以你还要看高质宝贝数的多少,去计算一下每一个类目的竞争力。尤其是当你在一个大类目里面去选择准备切入的小类目的时候。
市场的发展趋势如何。用今年的数据跟去年的数据进行对比,你可以对比出来整个类目的发展趋势,是向上走,还是向下滑,还是相对比较平缓,还是周期性的上升,或者周期性的下降。
类目是否存在季节性的影响。有的商品会有明显的季节性,这时候在淡季、旺季的时候,你就要设计好不同的运营策略。
(2)消费者分析
你要确定你的竞争对手的一些基本特征,因为这会给你的运营决策提供很多的依据。比如,你的目标顾客是男性多,还是女性多,这可以告诉你,你的详情页设计是应该偏感性,还是偏理性;你的目标顾客都是什么样的年龄段、什么样的收入水平、什么样的职业,这样在设计营销活动的时候,你会有更多的参考。
还有,你的目标顾客在什么地区比较集中,这样你在进行广告投放的时候会更加精准。有人说,这好弄,我们可以看什么地方搜索的人多,什么地方就是顾客集中地。正确么?貌似听起来不错!给大家讲一个案例:
在12年的时候,我们运营一个皮草店铺,当时准备精准投放直通车,我们用当时的淘宝指数看了一下搜索排行,第一的是浙江,结果我们就毫不犹豫的投放了浙江!结果很悲催,钱花的很快,但是投入产出比很差,转化很低。是我们词选的不精准么?也许!但是,很快,我们利用数据就分析出了真正的原因:浙江地区确实搜索指数很高,但是皮草的交易绝大部分都在浙江,也就是说搜索的人很多都是卖家!
(3)竞争分析
这里面,最关键的,你得知道你真正的竞争对手到底是谁,你是卖连衣裙的,那是不是就意味着淘宝上所有卖连衣裙的都是你的竞争对手呢?肯定不是,如果那样的话,去卖连衣裙就不是人干的活儿。
同级别、同风格、同档次、甚至在个性化搜索的趋势下,相似的款式,这才是你真正的竞争对手。找到你真正的竞争对手后,然后相办法去超越他,难么?不难,关键是你不知道应该从哪里去突破!竞争对手的销量增长趋势,竞争对手产品的核心优劣势,竞争对手参加了哪些活动……,当你知道了这些,你超越竞争对手很简单。其实对于中小卖家来讲,打造爆款、上首页、类目销量(相对的小竞争范围内)第一,不是不可能,关键你要能够通过数据分析出来,你需要达到的指标是什么。
2. 战略决策
战略决策这里主要是市场细分和目标市场选择方面的活动,举个简单的例子,切入价格的时候到底应该怎么定!一口价应该怎么定,用打折工具进行打折的时候,成交价格应该怎么定。如果没有数据的话,很多时候都只能靠着经验,甚至是瞎蒙一气,或者就是把折扣弄的非常低非常低。更有甚者,对一口价改来改去!
比如红框里面的价格,是成交价,如果你想切入83——345这个价格区间,那么你的一口价应该怎么定?折扣高一些好,还是低一些好?在这个价格区间,你如果想搞到首页的话,你需要做到多少销量?这些都是需要数据分析的!
3. 店铺基础优化
(1)选品
什么样的商品是最被市场喜欢的你知道么?什么样的商品竞争力是最大的你知道么?什么样的商品是最容易获得搜索引擎推荐的你知道么?这些都可以通过数据分析来实现。
(2)写标题
写标题最关键的环节无非就是选词,好了,说到选词的时候大家都关注渠道,下来框的词是不是好词?肯定是好词,但是好词对你来说就一定是最合适的词么?所以我们选词的时候只会关注数据:搜索人气、点击率、转化率、在线商品数、商城点击占比,各项指标综合考虑,谁都不能忽略,只不过不同类目,不停的店铺基础,关注的焦点不一样罢了。
(3)其他的优化
比如下架时间,首先不同关键词的下架时间权重就不一样的,如果你准备重点竞争的关键词是高权重,那么你就需要好好的卡一下下架时间,如果是低权重呢?比如“连衣裙”和“连衣裙”韩版,这两个词的下架时间权重肯定是不一样的。权重高,就意味着你在首页呆的时间就短,权重低意味着你在首页呆的时间就长
4. 店铺的日常维护和管理
比如,你可以通过数据发现店铺当前存在的问题是什么,产品结构是否需要调整,老客户营销应该怎么做。促销活动评估等等,都可以通过数据搞定!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10