
数据分析在淘宝运营中都可以干什么
很多人都在谈数据分析,淘宝从业者们,不管是从老板的角度来看,还是从运营的角度看,也都很重视数据化运营。那么,数据分析在我们日常的淘宝运营工作中都可以干什么呢?每一个数据分析的行为都应该有明确的目标指向,你想要达到什么样的目的!我们看下面这张图:
为什么说他是必学基础?因为我觉得:每一个运营人员在做绝大多数运营决策的时候,都可以有相应的、具体的、实操性很强的数据分析方法,包括数据的收集、整理、分析工具等等。加电商队长微信号:yhtaobao备注:标题,赠送黄金标题打造爆款视频系统实操教程。而这篇分享,就是给大家打下一个基础,看看在我们运营工作中,什么地方是可以做数据分析的。
1. 调研分析
数据化运营的第一个应用场景当然是全面分析,太多的淘宝卖家的思维流程是:有产品——上到淘宝——怎么才能卖好。
而真正的思维流程应该是:淘宝上什么有市场——去做(或者选什么产品)——怎样推到需要的消费者面前。而这个思维流程建立的基础就是全面分析,三个点:
(1)市场分析
做淘宝,第一件事儿就是要选择准备切入的市场,是做市场需求大但竞争激烈的类目,还是做小众但相对竞争比较小的类目。那至少你要综合考虑这几方面的因素吧:
竞争力的大小(这是我多次强调的一个概念)。市场需求量大不代表就一定适合你,如果你是一个实力雄厚的大公司,供应链稳定,资源丰富,那么很显然你应该选择需求量大的。但是如果你是小公司呢?需求量大意味着竞争也会激烈,所以你还要看高质宝贝数的多少,去计算一下每一个类目的竞争力。尤其是当你在一个大类目里面去选择准备切入的小类目的时候。
市场的发展趋势如何。用今年的数据跟去年的数据进行对比,你可以对比出来整个类目的发展趋势,是向上走,还是向下滑,还是相对比较平缓,还是周期性的上升,或者周期性的下降。
类目是否存在季节性的影响。有的商品会有明显的季节性,这时候在淡季、旺季的时候,你就要设计好不同的运营策略。
(2)消费者分析
你要确定你的竞争对手的一些基本特征,因为这会给你的运营决策提供很多的依据。比如,你的目标顾客是男性多,还是女性多,这可以告诉你,你的详情页设计是应该偏感性,还是偏理性;你的目标顾客都是什么样的年龄段、什么样的收入水平、什么样的职业,这样在设计营销活动的时候,你会有更多的参考。
还有,你的目标顾客在什么地区比较集中,这样你在进行广告投放的时候会更加精准。有人说,这好弄,我们可以看什么地方搜索的人多,什么地方就是顾客集中地。正确么?貌似听起来不错!给大家讲一个案例:
在12年的时候,我们运营一个皮草店铺,当时准备精准投放直通车,我们用当时的淘宝指数看了一下搜索排行,第一的是浙江,结果我们就毫不犹豫的投放了浙江!结果很悲催,钱花的很快,但是投入产出比很差,转化很低。是我们词选的不精准么?也许!但是,很快,我们利用数据就分析出了真正的原因:浙江地区确实搜索指数很高,但是皮草的交易绝大部分都在浙江,也就是说搜索的人很多都是卖家!
(3)竞争分析
这里面,最关键的,你得知道你真正的竞争对手到底是谁,你是卖连衣裙的,那是不是就意味着淘宝上所有卖连衣裙的都是你的竞争对手呢?肯定不是,如果那样的话,去卖连衣裙就不是人干的活儿。
同级别、同风格、同档次、甚至在个性化搜索的趋势下,相似的款式,这才是你真正的竞争对手。找到你真正的竞争对手后,然后相办法去超越他,难么?不难,关键是你不知道应该从哪里去突破!竞争对手的销量增长趋势,竞争对手产品的核心优劣势,竞争对手参加了哪些活动……,当你知道了这些,你超越竞争对手很简单。其实对于中小卖家来讲,打造爆款、上首页、类目销量(相对的小竞争范围内)第一,不是不可能,关键你要能够通过数据分析出来,你需要达到的指标是什么。
2. 战略决策
战略决策这里主要是市场细分和目标市场选择方面的活动,举个简单的例子,切入价格的时候到底应该怎么定!一口价应该怎么定,用打折工具进行打折的时候,成交价格应该怎么定。如果没有数据的话,很多时候都只能靠着经验,甚至是瞎蒙一气,或者就是把折扣弄的非常低非常低。更有甚者,对一口价改来改去!
比如红框里面的价格,是成交价,如果你想切入83——345这个价格区间,那么你的一口价应该怎么定?折扣高一些好,还是低一些好?在这个价格区间,你如果想搞到首页的话,你需要做到多少销量?这些都是需要数据分析的!
3. 店铺基础优化
(1)选品
什么样的商品是最被市场喜欢的你知道么?什么样的商品竞争力是最大的你知道么?什么样的商品是最容易获得搜索引擎推荐的你知道么?这些都可以通过数据分析来实现。
(2)写标题
写标题最关键的环节无非就是选词,好了,说到选词的时候大家都关注渠道,下来框的词是不是好词?肯定是好词,但是好词对你来说就一定是最合适的词么?所以我们选词的时候只会关注数据:搜索人气、点击率、转化率、在线商品数、商城点击占比,各项指标综合考虑,谁都不能忽略,只不过不同类目,不停的店铺基础,关注的焦点不一样罢了。
(3)其他的优化
比如下架时间,首先不同关键词的下架时间权重就不一样的,如果你准备重点竞争的关键词是高权重,那么你就需要好好的卡一下下架时间,如果是低权重呢?比如“连衣裙”和“连衣裙”韩版,这两个词的下架时间权重肯定是不一样的。权重高,就意味着你在首页呆的时间就短,权重低意味着你在首页呆的时间就长
4. 店铺的日常维护和管理
比如,你可以通过数据发现店铺当前存在的问题是什么,产品结构是否需要调整,老客户营销应该怎么做。促销活动评估等等,都可以通过数据搞定!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14