
数据挖掘关键技术介绍
数据挖掘技术虽是一项新兴的数据处理技术,但其发展速度十分迅猛,至今已经形成了决策树、神经网络、统计学习、聚类分析、关联规则等多项数据挖掘技术,极大的满足了用户的需求。
1 决策树算法
决策树算法是分类和预测的常用技术之一,可用于深入分析分类问题,使用时,决策树能够利用预测理论对多个变量中进行分析,从而预测处任一变量的发展趋势和变化关系;除此以外,还能对变量发展趋势进行双向预测,既能进行正向预测,也能进行反向预测,因此具有方便灵活的优势。
2 神经网络算法
神经网络是将计算机技术与现代神经生物学结合的产物,该技术是通过模拟人脑信息处理机制,对数值数据进行处理,并在处理过程中表现出一种思维、学习和记忆能力。
3 统计学习
统计学习是一种预测方法,该法是对数据进行深入分析,找出不能通过的规律,然后对所发现的规律进一步研究和分析,并结合实际情况对数据发展趋势进行预测。由此可见,统计学习能对人类无法确认的事务进行预测,这对了解进一步了解世界,探索未知事物具有重要意义。
4 聚类分析法
聚类分析作为一种非参数分析方法,可对样本分组中多为数据点间的差异及关联进行分析,使用该法时,无需对数据进行总体假设,也不需要受数理依据等原则的限制,只需要通过数据搜集、数据转换两个步骤,就能完成聚类分析的全过程。聚类分析能对数据的分布情况进行分析,还能对数据分布的局势进行快捷分析,准确识别出密集和系数区域;另外,聚类分析对单类的数据同样具有超强的分析能力,可对每个类的数据进行深入分析,发现其特征,找出变量和类之间的内在关联性。基于聚类分析原理基础上的方法很多,如层次法、密度分析法和网络法就是最常用的聚类分析方法。
5 关联规则法
关联规则的主要优势是能对数据与数据之间的依赖关系进行准确描述,该技术能对给定事物数据库进行深入分析,寻找各数据和项目之间的内在联系,然后将所有符合支持度和置信度的,符合一定标准的关联规则进行罗列。关联规则算法的典型代表是FP-Tree 算法,经过实验证明,该算法在处理数据关系方面具有十分强大的优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10