京公网安备 11010802034615号
经营许可证编号:京B2-20210330
多变量分析:分类决策树CHAID&CRT
今天我们来说说分类决策树的应用和操作!主要包括CHAID&CRT,是非常好用和有价值的多变量分析技术,
CHAID——Chi-squared Automatic Interaction Detector卡方自交互侦测决策树
CRT——Classification Regression Tree分类回归树;
CHAID和CART是最有名的分类树方法,主要用于预测和分类。在市场研究中经常用于市场细分和客户促销研究,属于监督类分析技术。其中,树根节点是独立变量-因变量,例如:使用水平、购买倾向、用户或非用户、客户类型、套餐类别、细分类别等。子节点基于独立变量和其他分类变量(父节点),按照卡方显著性不断划分或组合为树状结构。预测变量一般也是非数量型的分类变量。
CHAID最常用,但独立变量只能是分类变量,也就是离散性的,CRT可以处理数量型变量,有时候二者结合使用。CHAID和CRT都可以处理非数量型和定序性变量。
分类树方法产生真实的细分类别,这种类是基于一个独立变量得到的一种规则和细分市场。也就是说,每一个树叶都是一个细分市场。
下面我们通过一个案例来操作SPSS软件的分类决策树模块
假设我们有一个移动业务数据,包含有客户的性别、年龄、语音费用、数据费用、客户等级、支付方式和促销套餐变量。我们现在期望能够得到针对不同的促销套餐来分析“客户画像”,这样有利于针对性的促销!也就是不同套餐客户特征描述!
因变量是促销套餐,其它是预测变量或自变量!
我们看到,首先要求我们定义变量的测量等级并定义好变量变标和值标!因为,CHAID和CRT具有智能特性,也就是自交互检验和自回归能力,所以对变量测量尺度要求严格!
为什么说变量测量等级重要呢?例如,我们有个变量叫学历(1-初中、2-高中、3-大专、4-本科、5-硕士以上),如果我们设定为定序变量,则决策树可以自动组合分类,但无论如何都是顺序组合,也就是说可能(1-初中、2-高中、3-大专)为一类,(4-本科、5-硕士以上)为一类,但绝对不会把1和5合并一类;如果我们定义为名义变量,则可以任意学历组合为某类了!
基本原理:基于目标变量(独立变量)自我分层的树状结构,根结点是因变量,预测变量根据卡方显著性程度不断自动生成父节点和子节点,卡方显著性越高,越先成为预测根结点的变量,程序自动归并预测变量的不同类,使之成为卡方显著性。程序根据预先设定的树状水平数停止。最后每一个叶结点就是一个细分市场。当预测变量较多且都是分类变量时,CHAID分类最适宜。
预测变量大部分都是人口统计资料,使研究者很快就可以找出不同细分市场特征。传统的交互分析对多维交叉表和归并类是一项繁重的工作。
首先,我们确定因变量后,放入其它自变量。接下来,我们要选择CHAID的验证和条件参数!一般来讲:我们主要设定父节点和子节点的数量,以及规定树状结构的水平数,如何生长!分类树将根据设定参数决定树的增长和停止!通常,我们考察总的样本量大小,父节点是子节点的两倍,当然如果设定的太小,树会非常茂盛,得到很多非常小的细分市场,可能没有实际营销意义!树的水平数也是同样道理!
其它还有很多参数可以设定,比如分割样本,错误分类成本,利润等,分类决策树可以直接输出结果和SPSS语法或SQL语法规则!(略)
因为树比较大,看不清楚,我们需要在树查看器中分析!
从查看器中我们可以看到,客户等级最显著,也最重要,首先跑上来!针对低端客户,账单支付方式重要,对于预付话费的人来讲,数据业务小于50.73的主要是Y类套餐!这样我们就可以看到这个类别的特征了!
最后的分类预测正确分类84.4%。
下面是生成的SQL语法规则:
UPDATE <TABLE>
SET nod_001 = 4, pre_001 = 5, prb_001 = 0.974026
WHERE ((客户等级 IS NULL) OR 客户等级 <> 2 AND 客户等级 <> 3) AND ((数据业务 IS NULL) OR (数据业务 <= 38.754));
我们可以把语法规则嵌入在分析系统中就可以实现商业智能和营销了!
当然,CRT基本方法和解读方式都是一样的!
总结:CHAID和CRT基本操作过程
指定CHAID或CRT分类树
规定目标变量和预测变量
设定预测变量的测量等级,非数量型变量也可预先合并分类。
规定树状结构的水平数。
指定节点包含的最小样本数量。
自动生成分类树。
考察分类树的结构。
分析Gain Table.
分析错误分类风险比。
重新设定分类树参数。
生成SQL语言,SPSS规则语法将样本归类。
分类决策树因为具有自动侦测的智能特点,所以在数据分析时,特别是多变量分析中就不再喜欢用传统的交互分析了,因为用CHAID和CRT方便多了!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12