
在大数据的时代下,媒体是如何将大数据结合的
互联网时代就是一个大数据时代,在大数据时代带来的变革已在商界初露端倪,媒体行业亦敏锐地察觉到大数据将带来巨大的变革,因此各媒体通过平台合作的方式扩大对资源的利用、增强对数据的分析能力。但无论纸质媒体、电视媒体、网络媒体或社交媒体,对大数据的使用尚处于摸索阶段。
笔者认为,媒体在大数据时代的变革首先体现在新闻时效性方面,在下一阶段,媒体应充分借助大数据的预测功能进行预测性新闻报道;变革之二应体现在新闻采编方式上,媒体可利用“记者录入语音数据+大数据后台同步提取、分析、编写新闻”的方式进行新闻编写工作;变革之三应体现在扩大数据库规模上,媒体可借助媒介社区平台扩大现有数据库。此外,大数据时代媒体可通过媒介融合方式挖掘信息的二次价值。
大数据时代的反馈模式是一场新的生产革命:一切将以数据为中心,基于数据进行深度挖掘和分析,创造出有价值的信息,仅仅会采访、写稿已经不能满足新闻制作的需求了,对数据技术的应用也是必不可少的技能。
在“大数据时代”,新闻线索的获取需要更加专业,媒体可以通过自己的数据研究中心,或者依靠数据库新闻团队,利用专门的技术和工具从海量信息中去挖掘,从而得到更有价值的新闻线索,并进一步拓展新闻深度。
大数据时代一方面给我们带来了更多、更高质量的信息,另一方面也给人们带来了目不暇接、过载的信息量。过载的信息和用户个性化、定制化的有效需求之间出现矛盾,再好的内容,如果不能有效地和用户需求对接,也很难实现自身价值。
尤其是在当前已经进入信息智能化时代的大背景下,这就要求传统媒体在信息过载情况下树立起“内容为王,重视服务”理念,重视信息与用户的有效匹配。内容为王,实现个性化新闻订制。
网络信息的爆炸性与受众注意力的有限性,决定了用户只会根据自己的习惯和爱好选择有用的信息内容,这意味着个性化新闻将吸引更多的受众,成为媒体未来的生存之道。
大数据分析能够有效实现信息智能匹配,进而更好地实现信息价值的变现,实现信息的智能化生产、传播和匹配。运用大量用户数据,分析用户阅读习惯,找出相关关系,实现个性化新闻订制是媒体发展的新趋势。
如舆情服务—在“大数据”技术的帮助下,公众的意见、态度、情感等原来难以捉摸的内容也可以数据化,这使得网络舆论的研究可以更加精准。不仅如此,由于社会关系也已经在互联网上进行了充分展开,所以对公众舆论的研究就可以和社会关系等因素联系起来进行多维度的考察。这无疑对于提升舆情研究和服务具有重要价值。 “大数据时代”,也应树立“大舆情”观念。
再如数字营销—“大数据”技术为广告投放和数字营销也提供了基础。随着技术的发展,对于网络用户的行为追踪更加便利。通过网民行为追踪以分析网民消费行为,建立用户数据库,并据此采取一对一的广告投放,广告受众便细分到了某类人群,甚至一个上网终端对应一个受众来发布受众感兴趣的信息,广告的精准投放将进一步得到优化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10