
信息的大数据已成为未来企业竞争致胜的关键
随着互联网技术的不断发展,数据将像能源、材料一样,成为战略性资源。如何利用数据资源发掘知识、提升效益、促进创新,使其为国家治理、企业决策乃至个人生活服务,是大数据技术的追求目标。
在大数据时代,数据中心竞争十分激烈,新的数据分析产品更新飞快。从传统BI、Excel、报表工具,到最新可视化数据分析工具大数据魔镜,各行业可选择的新产品越来越多。很多企业在整体数据入口方面的竞争也变得越来越激烈,这种对于入口级的大数据“争夺战”让很多企业在数据挖掘和收集的技术方面开始加快更新速度。
曾经有一个大数据分析技术专家表示,从目前的大数据市场发展前景来看,大数据时代的竞争大致可以分为三个层面,也就是大数据本身的竞争、大数据技术层面的竞争和大数据思维的竞争。
虽然这三种竞争力都是不可替代的,但最终大部分价值还是必须从数据本身出发来挖掘,并且大数据本身作为公司的一种私有资产,是很难被竞争对手短期复制的,数据的拥有者也成为立足的重要砝码。
企业机会在信息的“数据化”当中
在当前IT行业激烈竞争环境之下,对于入口产品的控制成为了大数据厂商的必争之地,现在是一个万物互联的世界,我们身边的所有事物之间其实都具有“数据化”的联系,所有的事物所产生的信息都是数据。
只不过目前的大数据理论和技术还只是停留在“线下”阶段,只有将“线下数据”转变为“线上数据”,大数据的价值才可能真正意义的释放,同时形成自己的数据竞争壁垒。
硬件竞争成为“入口”
我们常说的数据化一定是伴随着硬件技术的发展延伸而来的,比如,纸笔让有形文字得以记录,万能条码和条形码扫描器使零售进入信息化运营时代,而最新的Google Glasses更是可以将人们的视觉注意力进行“数据化”。
未来,可植入人体的高智能芯片、可穿戴终端、智能网络与物联网等都会成为帮助信息进一步“数据化”的工具。近年来,美国互联网公司的正在增加自身的消费电子化元素,Google、Amazon这些IT行业巨头一直都在从一些消费电子企业身上学习并融合新的元素。
其实这样做的目的并不是为了要争取那一丁点的硬件利润,更多的还是为了拥有一个更加前置产品的数据入口。回归国内,其实在硬件层面的竞争压力也是相当大的,很多企业都是在拥有了大数据的核心竞争力之后,再配合数据思维和数据技术的发展,最终会带来数据价值的实现。
硬件数据能给我们带来什么
通过物联网、车联网等等万物互联的产物已经可以看得出我们的生活方式正在受到数据化的影响,据可靠数据预计,新一代科技产品的出货量和用户量将会是上一代科技产品的10倍量级,那随之而来的则是大量量化用户数据的产生。
不单是对于个人用户,对企业来说也一样,数据化带来的行业竞争开始变得越发激烈,很多不同行业的企业开始利用大数据对自身的优势方面不断扩大化。比如医疗行业,传统的医疗诊断过程更多的依托于“望闻问切”得到的短期的、粗粒度数据,现代医学引入大量的医疗设备,但也仅仅是在医院现场取得的扫描结果。
人类正面临一场新的科技和产业革命。在这场革命中数据是关键,数据分析技术是核心。只有企业通过分析自身掌握的大量数据,生产出符合客户需求的个性化产品,才能顺应真正应对各种机遇和挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10