
数据分析常用的五种思维方式
首先,我们要知道,什么叫数据分析。其实从数据到信息的这个过程,就是数据分析。数据本身并没有什么价值,有价值的是我们从数据中提取出来的信息。
然而,我们还要搞清楚数据分析的目的是什么?
目的是解决我们现实中的某个问题或者满足现实中的某个需求。
那么,在这个从数据到信息的过程中,肯定是有一些固定的思路,或者称之为思维方式。下面零一给你一一介绍。(本文用到的指标和维度是同一个意思)
第一大思维【对照】
【对照】俗称对比,单独看一个数据是不会有感觉的,必需跟另一个数据做对比才会有感觉。比如下面的图a和图b。
图a毫无感觉
图b经过跟昨天的成交量对比,就会发现,今天跟昨天实则差了一大截。
这是最基本的思路,也是最重要的思路。在现实中的应用非常广,比如选款测款丶监控店铺数据等,这些过程就是在做【对照】,分析人员拿到数据后,如果数据是独立的,无法进行对比的话,就无法判断,等于无法从数据中读取有用的信息。
第二大思维【拆分】
分析这个词从字面上来理解,就是拆分和解析。因此可见,拆分在数据分析中的重要性。在论坛上面也随处可见“拆分”一词,很多作者都会用这样的口吻:经过拆分后,我们就清晰了……。不过,我相信有很多朋友并没有弄清楚,拆分是怎么用的。
我们回到第一个思维【对比】上面来,当某个维度可以对比的时候,我们选择对比。再对比后发现问题需要找出原因的时候?或者根本就没有得对比。这个时候,【拆分】就闪亮登场了。
大家看下面一个场景。
运营小美,经过对比店铺的数据,发现今天的销售额只有昨天的50%,这个时候,我们再怎么对比销售额这个维度,已经没有意义了。这时需要对销售额这个维度做分解,拆分指标。
销售额=成交用户数*客单价,成交用户数又等于访客数*转化率。
详见图c和图d
图c是一个指标公式的拆解
图b是对流量的组成成分做的简单分解(还可以分很细很全)
拆分后的结果,相对于拆分前会清晰许多,便于分析,找细节。可见,拆分是分析人员必备的思维之一。
第三大思维【降维】
是否有面对一大堆维度的数据却束手无策的经历?当数据维度太多的时候,我们不可能每个维度都拿来分析,有一些有关联的指标,是可以从中筛选出代表的维度即可。如下表
这么多的维度,其实不必每个都分析。我们知道成交用户数/访客数=转化率,当存在这种维度,是可以通过其他两个维度通过计算转化出来的时候,我们就可以【降维】.
成交用户数丶访客数和转化率,只要三选二即可。另外,成交用户数*客单价=销售额,这三个也可以三择二。
另外,我们一般只关心对我们有用的数据,当有某些维度的数据跟我们的分析无关时,我们就可以筛选掉,达到【降维】的目的。
第四大思维【增维】
增维和降维是对应的,有降必有增。当我们当前的维度不能很好地解释我们的问题时,我们就需要对数据做一个运算,增加多一个指标。请看下图。
【增维】和【降维】是必需对数据的意义有充分的了解后,为了方便我们进行分析,有目的的对数据进行转换运算。
第五大思维【假说】
当我们拿不准未来的时候,或者说是迷茫的时候。我们可以应用【假说】,假说是统计学的专业名词吧,俗称假设。当我们不知道结果,或者有几种选择的时候,那么我们就召唤【假说】,我们先假设有了结果,然后运用逆向思维。
从结果到原因,要有怎么样的因,才能产生这种结果。这有点寻根的味道。那么,我们可以知道,现在满足了多少因,还需要多少因。如果是多选的情况下,我们就可以通过这种方法来找到最佳路径(决策)
当然,【假说】的威力不仅仅如此。【假说】可是一匹天马(行空),除了结果可以假设,过程也是可以被假设的。
我们回到数据分析的目的,我们就会知道只有明确了问题和需求,我们才能选择分析的方法。
顺带给大家讲讲三大数据类型。这个属于偷换概念,其实就是时间序列的细分,不是真正意义上的数据类型,但这个却是在处理店铺数据时经常会碰到的事情。数据放在坐标轴上面分【过去】丶【现在】和【未来】
第一大数据类型【过去】
【过去】的数据指历史数据,已经发生过的数据。
作用:用于总结丶对照和提炼知识
如:历史店铺运营数据,退款数据,订单数据
第二大数据类型【现在】
【现在】的概念比较模糊,当天,当月,今年这些都可以是现在的数据,看我们的时间单位而定。如果我们是以天作为单位,那么,今天的数据,就是现在的数据。现在的数据和过去的数据做比较,才可以知道现在自己是在哪个位置,单有现在的数据,是没什么用处的。
作用:用于了解现况,发现问题
如:当天的店铺数据
第三大数据类型【未来】
【未来】的数据指未发生的数据,通过预测得到。比如我们做得规划,预算等,这些就是在时间点上还没有到,但是却已经有了数据。这个数据是作为参考的数据,预测没有100%,总是有点儿出入的。
作用:用于预测
如:店铺规划,销售计划
三种数据是单向流动的,未来终究会变成现在,直到变成过去。
他人我不知道,但我自己非常喜欢把数据往坐标轴上面放,按时间段划分,每个数据的作用就非常清晰。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10