京公网安备 11010802034615号
经营许可证编号:京B2-20210330
电信业务领域的全面开放,激烈竞争使得目前的中国电信市场烽烟四起。“客户-产品-市场-利润”成为目前各电信运营商的基本发展思路。中国电信集团去年在全国推出营销分析系统,该系统具有主题分析、专题分析、统计报表等功能,基本解决了“发生了什么?”这个问题。但是,在海量的业务数据基础上,是否隐含着某些内在的商业规律,如何能够发现这些商业规律,做到有针对性营销,实现从数据到知识再到价值的提升呢?我们想到了数据挖掘技术。
数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。
当前中国电信在一些省做MR的试点。MR主要采用聚类和预测挖掘技术,实现了客户分群模型和流失预测模型的建立和应用。通过客户分群模型,对客户进行细分,找出有相同特征的目标客户群,有针对性的进行营销;通过流失预测模型,锁定流失的高危客户,进行事前挽留,取得了一定的效果。本文主要想介绍一下数据挖掘的另一种应用——交叉销售模型(cross-sell model)。
在电信行业的今天,大量发展新的客户越来越困难,而且成本比较高,企业要做的不仅要挽留目前的客户,而且还必须通过有效的交叉销售和提升销售来最大化他们的价值。
交叉销售和提升销售提供预先集成的模式和流程来帮助您增加收入、预测各位客户的“下一步?交叉销售和提升销售让您能够描述购买了大量产品或产品升级的客户,然后您可以对其它客户应用类似的分析,以确定谁是最好的交叉销售和提升销售的目标客户。
交叉销售模型的两个阶段
制作交叉模型的两个阶段为:关联规则的创建和如何使用WEB表现方式展现,使用决策树进行目标客户的选取。本次挖掘的目的是希望发现目前选择多个套餐的客户在套餐组合方面是否有什么规律,哪些套餐容易被客户同时选择,并根据这个规律,发现可能选择这种组合的其它客户,然后对其进行重点的营销,提高营销的成功率,降低营销成本。
工具的选择
Clementine是ISL(Integral Solutions Limited)公司开发的数据挖掘工具平台。1999年SPSS公司收购了ISL公司,对Clementine产品进行重新整合和开发,现在Clementine已经成为SPSS公司的又一亮点。
作为一个数据挖掘平台,Clementine结合商业技术可以快速建立预测性模型,进而应用到商业活动中,帮助人们改进决策过程。强大的数据挖掘功能和显著的投资回报率使得Clementine在业界久负盛誉。它同那些仅注重模型的外在表现而忽略数据挖掘在整个业务流程中的应用价值的其它数据挖掘工具相比,优势十分明显。Clementine强大的数据挖掘算法,丰富的输出展现方式,贯穿业务流程的设计思路,可以帮助企业在缩短投资回报周期的同时极大地提高投资回报率。
数据的准备
数据的准备指在商业理解(而非技术理解)的基础上进行数据的抽取、转换、装载工作。这要求挖掘人员对现有业务系统比较熟悉,而且必须具有一定的数据汇总工作能力。
数据源的分析
在分析过程中主要有二方面:客户的电信消费属性,客户的人口统计学等社会学属性 。一般来讲,客户的电信消费属性在电信运营商的系统上是较为完整的,可以从计费系统、营销渠道系统、网间结算系统、10000号系统、智能网系统等得到客户的通话详单、账单、客户服务记录信息,运营商只要从客户的所有电信消费角度进行整理,就可以得到其电信消费属性。基于客户人口统计学等社会学属性的分析,对电信企业的经营决策很有价值,但很难做到,主要原因是基础数据缺乏。决策分析所需要的客户社会学属性包括地理因素、人口因素、心理因素、行为因素等很难取得。分析这些因素对电信运营商的市场营销决策有着重要作用,因而需要通过各种方式和渠道收集这些数据。目前,电信运营商解决这个问题的办法主要有两个:一是对客户进行普查,其工作量和难度相当大;二是通过积分奖励等措施搜集部分高消费客户的社会属性资料。
挖掘信息的内容
在挖掘所使用的信息中,我们主要包括三部分:客户详细描述,客户选择的套餐,客户的消费行为。(见下表)
现在我们找出了客户喜欢交叉选择的套餐,但是我们不知道哪些客户喜欢进行这样的交叉选择,下来采用决策树算法来进行目标客户群的锁定。(见下图)
总结
交叉销售模型不仅可以使用在用户套餐的交叉选择上,还可以指导客户经理进行新产品的推广。该案例的演示,说明了交叉销售模型的创建流程,指导市场营销策略的制定,最终可以提升客户的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12