京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代_大数据分析将走向何方_数据分析师
现阶段关于大数据的未来,下一步是什么,我们如何利用数据在更深的层面提取有意义的消费者信息来超越我们现在的程度?最标准的答案是从比以往更 多的设备上实时获取数据和分析的能力。的确,通过家庭,穿着,汽车我们可以收集海量的数据,但是这仅仅只是目前方法的延伸。
数字vs情绪
现在大部分的数据收集都是数值或二进制。数据告诉我们如果有人进入到一个网站,浏览到什么程度,多长时间,关注点在哪,但数据没有告诉我们为什么。我相信大数据时代,大数据2.0——不是关于二进制和数值,而是提出更深层次的问题。大数据2.0 应该不仅是关注于在哪和什么,而且也关注回答为什么。大数据2.0应该关注于更好的理解消费者的情绪状态和决策逻辑,从而提供更深入的理解消费者的选择。
假设我们是一家消费品公司,我们想引入一个新的尿布产品进入市场。我们决定看看亚马逊为了更好地理解哪些产品是市场领袖(销售排名和销售数量),消费者喜 欢产品本身的程度(评论)。如果我们在所有尿布产品中分析这些指标,我们有一个大数据1.0图片,告诉我们到底是谁卖的最多,消费者最喜欢的是什么。然而,在大数据2.0中这是不够的,大数据2.0需要知道原因:为什么这个产品卖的最多?为什么它有5星评价?
解决方案
对我们来说, 开始创建大数据2.0最容易的方法是每天收集非结构化数据。这可以是评论、客户反馈电子邮件、社区论坛,甚至是自己的CRM系统。着眼于这个数据最简单的方法是通过文本分析。
文本分析是一个相当简单的过程:
1、收集:收集要分析的原始数据;
2、转换和预处理:转换数据的格式,让它更容易阅读;
3、改进:通过添加额外的数据点优化数据;
4、加工:进行具体分析和数据分类;
5、频数分析:评估结果并转化成数值指标;
6、获取:实际提取信息。
为了在下一层里采用这些,我们将开始从评论中提取词汇和短语。这会告诉我们一些重复出现的信息及评论的频数分析。实际上执行这个分析通过评估成千上万的评论并且发现四个可行的见解。没有文本分析,我们不会得到这些。
1、为什么销售得那么好
当看着最畅销产品的评论,发现在大多数有用的评论中提到最多的关键词是“价格”“特点”和“价值”。这告诉我们,除了产品的定价,人们不买它也因为它的质量和功能特点。所以当我们推出我们的产品,我们会注意价格/价值导向,而不仅仅是功能特点。
2、为什么人们不喜欢它
这是一个很有启迪作用的问题。最多负面评论的品牌有极高频率的关键词“胶带”,“粘贴”,“保持关闭,”和“打开”。
3、智能过滤
这里有一个有趣的问题,很多负面评论并不是关于实际的产品,而是关于物流、库存和包装的问题。通过标记和删除这些设置,可以在纯粹的产品层面做出评价为了 相关产品的关注点。如果我们在亚马逊展示我们的尿布,我们建议在页面显著位置上增加物流和库存水平保证——这是一个竞争优势,直接消除消费者的担忧。
4、他们想要什么
从研发的角度来看,这是一个黄金观点。通过评估审查一些关键词像“我希望”,“希望”或“他们应该”,我们能够发觉消费者的共同特点当他们寻找尿布的时 候。这些都是伟大的见解,解决消费者不断变化的需要。我们可以将这些产品特性提供给研发团队以及广告文案。
正如你所看到的,仅仅只是在亚马逊分析尿布的种类,大数据分析就超过了二进制性能指标。
开始着眼于现有的数据,导出CRM,检查评论,网站或在主题论坛提到的产品,甚至是销售部门的电子邮件收件箱。这是个大数据时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31