
大数据实践 基础架构先行_数据分析师
大数据被认为是下一个创新、竞争和生产力的前沿,谁率先抓住大数据的先机即意味着能够在未来市场竞争之中取得杆位。当前大数据市场除了传统厂商之外,还同时涌现出一大批创新技术厂商,并且像零售、金融、互联网、政府机构、科研教育等行业用户对于大数据的认知与认可大大超过了以往任何一项IT技术。归根结底,这是因为大数据能够对业务产生最直接的影响。大数据当前处于上升期和快速发展时期,人们当前对于大数据的期望值也是越来越高。
大数据时代下的基础架构挑战
毫无疑问,大数据时代下,要想实现更大的业务价值,首先需要解决的就是基础架构问题,基础架构之中存储又是重中之重。当前趋势下,社交媒体、移动互联网、物联网、多媒体应用等趋势兴起使得非结构化、半结构化数据大幅增长,加上传统的结构化数据增长,用户的整体数据量呈现出海量、高增长的状态。如何面对数据源繁多、数据增长速度快速、数据种类丰富化、数据存取形式复杂化以及应用需求多样化就成为当前大部分用户首要面对的挑战和难题。
著名咨询机构麦肯锡认为,大数据是指其大小超出了典型数据库软件的采集、存储、管理和分析等能力的数据集。大数据公认的4V特征包括:容量、类型、速度以及价值(volume、variety、velocity和value)。著名调研机构IDC对于大数据技术定位为:通过高速捕捉、发现和/或分析,从大容量数据中获取价值的一种新的技术架构。另外一方面,我们也可以发现当前对于大数据的一个误区广泛存在于用户之中:当前仍然有很大一部分用户认为新兴起的Hadoop技术、商业智能分析(BI)这些就意味着大数据,他们认为掌控好Hadoop或者BI即可掌控大数据。事实上,大数据不仅仅是Hadoop或者商业智能分析,这些热门技术是大数据分析和处理过程中当前热门的领域,而要想真正实现大数据的价值、为业务发展服务,则需要从全面的角度考虑。
因此,传统存储产品由于自身的设计缺陷,在扩展性方面、与上层应用集成度、高性能、自动化能力、成本等方面已经很难满足大数据诸多的存储特征,根本很难肩负起企业大数据存储、分析以及应用的诸多需求。尤其当前数据的类型丰富程度、容量愈发变大的情况下,并且在业务部门跟IT日益紧密的趋势下,对于数据的存储与分析的速度和性能要求越来越高,对海量数据的快速、高效存储绝对应该是大数据时代存储系统的第一必备要求,否则大数据后续相关的大数据分析、大数据处理都将成为空谈。
看清大数据趋势 不再雾里看花
在大数据时代下,大数据存储产品显然要比传统存储产品考虑更多因素,目前市场中已经有很多专门为大数据应用设计和开发的存储系统,这其中包括国内和国外诸多厂商的产品。虽然有很多产品可供大家参考和选择。但是对于用户而言,能够看清大数据基础架构的发展趋势,则可在基础架构建设方面不再雾里看花。
趋势一:容量大、易扩展。众人皆知,大数据的容量往往是PB级别,甚至有些用户的数据量开始达到EB级别,这要求未来的存储系统能够具备容量大、易扩展的特点。
趋势二:高性能。大数据的一大特征即为速度,要求存储系统能够快速存储数据,因此这要求存储系统的响应速度能够符合大数据的要求。
趋势三:多集成。大数据时代下,数据来源广泛与复杂,不同类型的数据访问、处理和分析的方式不同,这就要求大数据时代下存储系统的接口集成化,使得大数据存储系统能够应对不同的数据需求。
趋势四:自动化。由于大数据使得数据量大幅增加以及数据处理流程、方式更加复杂,给存储系统的管理、维护变得更加复杂。因此,管理自动化也是衡量大数据存储系统的重要趋势。
趋势五:安全可靠。大数据最为核心的价值所在即为数据,因此确保数据的安全可靠也是大数据存储需要重点考虑的因素。保证数据的可用性、完整性和持久化都是未来存储系统所必备的趋势。
趋势六:弹性成本。大数据并不意味着用户必须要在基础架构上一次性投入大额成本,具有弹性、可扩展的存储系统能够帮助用户实现弹性成本,让不同层面的用户都能在大数据浪潮中淘金。
综述
追本溯源,在大数据时代下,我们往往不能只将眼光盯在数据分析与处理层面,用户在尝试大数据解决方案之前,更应从全面角度去审视自身的基础架构是否适合大数据未来的需求与发展——大数据实践,基础架构先行。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26