
应用数据挖掘进行客户关系管理
在当今市场上,商业的成功离不开有效的客户关系管理(Customer Relationship Management,CRM)。客户关系管理的本质是更有效地进行竞争。客户关系管理的目标是缩减销售周期和销售成本、增加收人、寻找扩展业务所需的新的市场和渠道、以及提高客户的价值、满意度、赢利性和忠实度。企业实施客户关系管理,可以更低成本、更高效率地满足客户的需求,从而可以最大程度地提高客户满意度及忠诚度,挽回失去的客户,保留现有的客户,不断发展新的客户,发掘并牢牢地把握住能给企业带来最大价值的客户群。
客户关系管理最基本的含义就是管理所有与客户的相互作用。随着客户信息的绝对容量的急剧增大,企业与客户的相互作用日益复杂,数据挖掘被推到了客户关系管理的最前端。利用在传统的数据库技术基础上发展起来的数据挖掘等先进的智能化信息技术,利用神经网络等分析技术,挖掘出潜在的有用信息,用于企业辅助决策。
有效的客户关系管理中数据挖掘的基本步骤
1. 定义商业问题(Define business problem)。每一个客户关系管理应用程序都有一个或多个商业目标,为此你需要建立恰当的模型。根据特殊的目标,如“提高响应率”或“提高每个响应的价值”,需要建立完全不同的模型。问题的有效陈述包含了评测客户关系管理程序结果的方法。
2. 建立行销数据库(Build marketing database)。需要建立一个行销数据库,因为操作性数据库和共同的数据仓库常常没有提供所需格式的数据。此外,客户关系管理应用程序还可能影响系统快速、有效地执行。在建立行销数据库的时候,需要对它进行净化— 如果想获得良好的模型,必须有干净的数据。需要的数据可能在不同的数据库中,如客户数据库,产dAn数据库以及事务处理数据库。这意味需要集成和合并数据到单一的行销数据库中,并协调来自多个数据源的数据在数值上的差异。
3. 探索数据(Explore data)。在建立良好的预测模型之前,必须理解所使用的数据。可以通过收集各种数据描述(如平均值、标准差等探索统计量)和注意数据分布来开始进行数据探索。可能需要为多元数据建立交叉表,并且,图形化和可视化工具可以数据准备提供重要帮助。
4. 为建模准备数据(Prepare data for modeling)。这是建立模型之前数据准备的最后一步。这一步中主要有四个主要部分:一是要为建立模型选择变量,理想情况是将你拥有的所有变量加入到数据挖掘工具中,找到那些最好的预示值,但在实际中,这是非常棘手的。其中一个原因是建立模型的时间随着变量的增加而增加。另一个原因就是盲目性,包括无关紧要的数据列被加入,却很少甚至不能提高预测能力。二是从原始数据中构建新的预示值,例如使用债务——收入比来预测信用风险能够比单独使用债务和收人产生更准确的结果,并且更容易理解。三是你需要从数据中选取一个子集或样本来建立模型,使用所有的数据会花费太长的时间或者需要购买更好的硬件,对大多数客户关系管理问题来讲,使用经过恰当的随机挑选的子集并不会引起信息不足。建立模型的两种选择为:使用所有数据建立少数几个模型,或者建立多个以数据样本为基础的模型,后者常常能帮助你建立更准确有力的模型。四是,需要转换变量,使之和选定用来建立模型的算法一致。
步骤2到4是组成数据准备的核心。他们花费的时间或努力比其他几步加起来还多,数据准备和模型建立之间可能反复进行,因为你从模型中学到新的东西,而这又要你修改数据。数据准备阶段无论如何也要占去全部数据挖掘过程的50%到90%的时间和努力。
5. 数据挖掘模型的建立(Build model)。模型建立是一个迭代的过程,需要研究可供选择的模型,从中找出最能解决你的商业问题的一个。大多数客户关系管理应用程序都基于一种叫做监督学习的协议。你开始使用客户信息,而且期望的结果是已知的。例如,你有来自以前的邮件列表的历史数据,它与你现在使用的数据非常相似,或者,你可能不得不进行邮寄测试来确定人们对一个提议的响应如何。你将数据分为两组,使用第一组来训练或评估模型,接着使用第二组数据来测试模型。当训练和测试周期完成之后,模型也就建立起来了。
6. 评价模型(Evaluate model)。评价模型结果的方法中,最可能产生评价过高的指标就是精确性。假设有一个提议仅仅有1%的人响应。模型预测“没有人会响应”,这个预测99写是正确的,但这个模型100%是无效的。另一个常使用的指标是“提升多少”,用来衡量使用模型后的改进有多大,但是它并没有考虑成本和收入,所以最可取的评价指标是收益或投资回收率。针对不同的目标,如提升最大利润或最大投资回收率,你可以选取不同百分比的邮件列表来发出请求函。
7. 将数据挖掘运用到客户关系管理方案中(Deploy model and results)。在建立客户关系管理应用时,数据挖掘常常是整个产品中很小的但意义重大的一部分。例如:通过数据挖掘而得出的预测模式可以和各个领域的专家知识结合在一起,构成一个可供不同类型的人使用的应用程序。数据挖掘实际建立在应用程序中的方式由客户交互作用的本质所决定。与客户的交互作用的两种方式:客户主动联系你(inbound)或者你主动联系他们(outbound)。部署的需求是完全不同的。后一种方式的特征由你的公司所决定,因为联系活动是由公司发起,例如直接邮寄活动。结果,通过运用模型到你的客户数据库,来选择客户进行联系。在inbound事务中,如电话定购、Internet订购、客户服务呼叫等,应用程序必须实时响应。因此数据挖掘是内含在这种应用程序中的并且积极地做出推荐动作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13