京公网安备 11010802034615号
经营许可证编号:京B2-20210330
好的决策应该是“数据驱动”的,但是如果数据有效性不好,就不可能据此做出好的决定。我的整个职业生涯几乎都在做市场调研和调查数据分析方面的工作,根据我的经验,我已经找到了一个试金石,能够判断一组业务数据是否值得在决策过程中引用。
要想从有效有用的数据中剔除虚假无效的数据,就需要问以下九个问题。如果对于任何一个问题的答案是“是的”,那么这些数据就是虚假的。
1. 这些数据的来源是否以此牟利?
如果收集数据的机构能够通过扭曲数据获得经济利益,那么数据就会被扭曲。例如,我曾经听到过一名市场研究员(一名外部顾问)询问雇佣了他的市场营销人员:“你想要数据说什么?”那么他所提交的研究报告中的数据一定经过了仔细地调整,以便反映这个观点。
2. 原始数据是否没有公布?
任何缺少原始数据的研究结果都是虚假的。原始数据不公布一定是因为以下的某一个原因:
原始数据实际上完全证明了别的事情。
原始数据会显示出该研究使用了奇怪的定义或者有偏见的问题。(参见下面的第三点和第五点。)
原始数据不存在,因为研究结果完全是某人的“信口雌黄”,就像他们交易中所说的那样。
3. 是否扭曲了正常的定义?
虽然人类的语言本质上市不精确的,但是如果一份调查问卷或者调查提纲中对于某个词的定义超出了其普遍接受的含义,那么和这个词相关的所有数据就都是虚假的。例如,一项调查将“客户满意”定义为“未退回所购产品”就显然会误导读者,错误地理解你对客户服务的好坏程度。
4. 被调查者是否不是随机选取的?
如果一项调查只询问那些保证会提供特定回答的人,那么收集到的数据就会反应出这样的意见。例如,我有一次看到一家广告公司对于那些购买了该广告的出版商的销售经理们进行调查,用这种方法来衡量“广告效果”。不用说啦,这款广告的效果一定是“效果好极了”。
5. 是否在调查中使用了诱导性问题?
你如何问一个问题往往会让接受调查的人按照可预见的方式来回答。我们可以看看一个来自政府的例子,如果一名研究人员询问退休人员“你是否赞成政府援助?”那么你就会得到和“你是否支持联邦医疗保险?”相反的答案。
6. 结果是否计算了平均值?
如果用“平均”的概念来分析的话,即使是好数据也会变成糟糕的数据。例如,在一个房间里有一名亿万富翁和九百九十九个身无分文的乞丐,他们的平均财富是一百万美元。有效的数据应该使用“中位数”,当所有其他的值都是按照顺序排列的时候,中位数是中值。在上面那个例子中,财富的中位数是零。
7. 接受调查的人是否是自我选择的?
企业通常会进行网络调查,由访问网站的人决定是否愿意参与调查。但是,任何基于“自我选择”的调查结果都必然是虚假数据。例如,如果我在网站上贴出一个类似这样的问题,“我们的客户服务如何?”只有那些得到非常好或者非常糟糕的客户服务体验的人才会参与回答。结果你就会对于客户通常会得到什么样的服务体验毫无概念。
8. 是否先入为主地假定了因果关系?
即使两组数据看起来步调一致,你也不知道这种一致性是否有意义,除非你很确定地知道一组数据会导致另一组数据。例如,如果销售收入在你的销售人员参加了销售培训课程之后出现了上升,那么这种收入的上升可能是因为销售培训起了作用,也有可能是因为和销售培训无关的因素,例如经济回暖的因素。相关性并不一定是因果关系。
9. 是否缺乏独立的确认?
科学研究在其他人(原始研究人员之外)独立地证明了研究成果之前,是不会被视为有效的。不幸的是,绝大多数市场研究都是单一来源的,这就让它变得天然不可靠。例如,如同上面那个例子中所说的,你的销售收入在销售人员参加了销售培训之后出现了增长,那么这种增长可能是因为销售培训发挥了作用,也有可能是其他的、和销售培训无关的因素造成的,例如经济回暖。相关性并不一定是因果关系。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29