京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析从确定分析的内容到目的的实现,期间是通过数据分析方法来实现。掌握了数据分析的方法就好比厨师掌握了厨艺。
数据分析的方法可以分为基础类和衍生类。基础类简单,衍生类是将各种基础分析方法综合起来的复杂方法。
基础分析方法
1、对比分析
对比分析很好理解,比如世界各国买iphone6所需要的工作时间的对比,我用FineBI生成一张对比图
2、分类分析
首先,为什么要分类?
因为我们分析研究的对象常常是由多个个体构成,比如我们要研究市场对某种产品的满意度,如果把目光放在每个个体上,工作效率可见低下。如果把所有个体按照特点和属性来分类,使类内差异够小,就可以将大量个体分成有属性的几类。用类别代替个体是数据分析常用的技巧。
从什么维度分?
维度可以是性别、年龄、收入、行为、时间、低于、季度、分公司等外在属性;细分项目后会按照分析者态度、价值观、以及分析的思路引导出的分类属性。后者的难度比前者大,分析也够深入。
3、分布分析
当对比的对象不是一个数值,而是一组数据,就会用到分布分析。分布分析就是集中和离散趋势。举个例子,假设A\B是某企业的客户,在该企业的平均月消费额都是140万元,看各月具体消费额,那么该企业对这两个客户的营销工作是否相同呢?
可以发现两者的稳定性明显不同,对于波动较大的A客户也许该产品不是每月必须品,是属于应急性和临时性质的消费,进一步调研后可以针对A客户偏好投其所好。如果是临时性消费可以教育客户扩大消费。
4、相关分析
事物间的某种联系最常见的就是因果分析。在相关分析中,找到关键影响因素是重点。
举个例子,在互联网站行业最常间的分析就是流量和转化/订单分析。当你发现某天的转化增多,就要分析增加的转化的渠道,发现来自网站的转化陡然上升,就要考虑短时间内官网的流量为什么增多,把这段时间做的渠道投放都拿出来看一下,有无新动作。如果发现在某站点投放的广告流量增加,为什么增加,一看由于改变了投放的策略导致曝光量增加。
诸如此类的从结果一步步倒推的分析有很多,就像洋葱一层一层剥落。
有人会说,每一步的维度都太多,涉及的业务范围也较大,分析不过来怎么办?借助工具。试图画一个因果关系图,每一层关系涉及到什么数据,然后把数据都准备好(如果是自己的EXCEL表,请确保每个表的字段名都一致,;如果是数据库就简单多了),将EXCEL的数据导入FineBI工具,将表之间建立联系(就是把每两个表之间相同的字段比如“日期”连起来)。如果是数据库把表取出,直接建立联系。
分别建立好每一层数据图,按照分析的思路设置联动和钻取功能,比如点击高峰时段的流量点,钻取到每个渠道的流量状况,如果有多层还可以不断钻取下去。
所以说,很多情况下,借助工具会省事很多。
衍生分析方法
对比、分类、分布、相关这4种基础方法除了直接应用还可以派生出很多衍生方法。这类方法难度较大,也最贴近实际应用,在企业决策方面会较常用到,包括战略决策、投资决策和营销决策。所以派生的分析也包括战略分析、投资分析和营销分析。也就是所谓的业务主题分析。
这几类分析最重要的是结合业务需求以及分析思路。对于业务需求依实际情况不同而不同,如何形成自己的分析思路也在前文提过。掌握了以上的基础分析方法,主题的分析也就是各种基础图表的组合,以及联动钻取功能的应用,当然背后离不开分析思路的核心支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12