
数据分析从确定分析的内容到目的的实现,期间是通过数据分析方法来实现。掌握了数据分析的方法就好比厨师掌握了厨艺。
数据分析的方法可以分为基础类和衍生类。基础类简单,衍生类是将各种基础分析方法综合起来的复杂方法。
基础分析方法
1、对比分析
对比分析很好理解,比如世界各国买iphone6所需要的工作时间的对比,我用FineBI生成一张对比图
2、分类分析
首先,为什么要分类?
因为我们分析研究的对象常常是由多个个体构成,比如我们要研究市场对某种产品的满意度,如果把目光放在每个个体上,工作效率可见低下。如果把所有个体按照特点和属性来分类,使类内差异够小,就可以将大量个体分成有属性的几类。用类别代替个体是数据分析常用的技巧。
从什么维度分?
维度可以是性别、年龄、收入、行为、时间、低于、季度、分公司等外在属性;细分项目后会按照分析者态度、价值观、以及分析的思路引导出的分类属性。后者的难度比前者大,分析也够深入。
3、分布分析
当对比的对象不是一个数值,而是一组数据,就会用到分布分析。分布分析就是集中和离散趋势。举个例子,假设A\B是某企业的客户,在该企业的平均月消费额都是140万元,看各月具体消费额,那么该企业对这两个客户的营销工作是否相同呢?
可以发现两者的稳定性明显不同,对于波动较大的A客户也许该产品不是每月必须品,是属于应急性和临时性质的消费,进一步调研后可以针对A客户偏好投其所好。如果是临时性消费可以教育客户扩大消费。
4、相关分析
事物间的某种联系最常见的就是因果分析。在相关分析中,找到关键影响因素是重点。
举个例子,在互联网站行业最常间的分析就是流量和转化/订单分析。当你发现某天的转化增多,就要分析增加的转化的渠道,发现来自网站的转化陡然上升,就要考虑短时间内官网的流量为什么增多,把这段时间做的渠道投放都拿出来看一下,有无新动作。如果发现在某站点投放的广告流量增加,为什么增加,一看由于改变了投放的策略导致曝光量增加。
诸如此类的从结果一步步倒推的分析有很多,就像洋葱一层一层剥落。
有人会说,每一步的维度都太多,涉及的业务范围也较大,分析不过来怎么办?借助工具。试图画一个因果关系图,每一层关系涉及到什么数据,然后把数据都准备好(如果是自己的EXCEL表,请确保每个表的字段名都一致,;如果是数据库就简单多了),将EXCEL的数据导入FineBI工具,将表之间建立联系(就是把每两个表之间相同的字段比如“日期”连起来)。如果是数据库把表取出,直接建立联系。
分别建立好每一层数据图,按照分析的思路设置联动和钻取功能,比如点击高峰时段的流量点,钻取到每个渠道的流量状况,如果有多层还可以不断钻取下去。
所以说,很多情况下,借助工具会省事很多。
衍生分析方法
对比、分类、分布、相关这4种基础方法除了直接应用还可以派生出很多衍生方法。这类方法难度较大,也最贴近实际应用,在企业决策方面会较常用到,包括战略决策、投资决策和营销决策。所以派生的分析也包括战略分析、投资分析和营销分析。也就是所谓的业务主题分析。
这几类分析最重要的是结合业务需求以及分析思路。对于业务需求依实际情况不同而不同,如何形成自己的分析思路也在前文提过。掌握了以上的基础分析方法,主题的分析也就是各种基础图表的组合,以及联动钻取功能的应用,当然背后离不开分析思路的核心支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10