
大数据在各行业的应用和趋势
无论你在哪里工作,或者你住在哪里,传输,收集和分析数据将在每一天发生在你的周围,并可能在今后几年里从根本上保持改变世界的各种产业。
虽然你可能会只专注于你自己的地域或工作领域,当涉及到大数据时,重要的是要意识到这是所有行业目前面临的趋势。这样,你就可能知道你的生活方式和你的职业生涯可能会出现什么样的影响,以及在自己的部门中可以利用的新机会或获得的想法。
通过了解当前不同行业使用的大数据的一些方法,可以知道这对对未来意味着什么。
医疗卫生
医疗卫生是大数据对企业的影响显著的行业之一。这有很多种方法,其中采集和大量的信息分析,将会继续改变提供医疗保健的方式。
社会服务
以社会服务业为例,在未来的几年内,在完成了社会工作高级研究之后,可能会发现可以使用整理资料,寻找服务和病人,以及在哪里以及如何生活,发现自己与他们之间的相关性。
当他们第一次进入护理系统,工作人员可以查看比如患者的家庭地址,他们与社会工作者之间的联系,或者他们的住院率和住院天数。他们可以分析家庭状况,干预措施和结果之间的相关性,以确定潜在患者的状况。
甚至有可能提前获得家庭暴力等负面信息。此外,大数据也应该使社会工作者更容易识别客户的需求,甚至他们自己没有意识到的需求,然后直接面向他们提供量身定制的服务。
临床试验
卫生保健受大数据可用性影响的另一个领域是临床试验。研究人员可以使用大量的数据挑选适合他们试验的最好的科目。
此外,制药公司之间的数据的共享,也可能会各种药物的有了新突破。随着制药业的研究人员共享信息,他们发现,一些药物的治疗范围可能比以前认为的更广泛。
制造行业
制造行业企业,尤其是那些基于流程的部门,也在使用大数据来进行广泛的变革。
降低成本和增加利润
特别是,制造商正在使用先进的分析技术,以降低成本,提高产量。生产操作和车间的信息被用来提供分析洞察,这有助于简化流程,改进产品。
一个例子,例如生物制药生产中,其中制造商通常必须监测超过200个变量,以确保成分保持纯净,所有物质创造坚持合规性要求。目前在采用大数据之后,企业现在可以提高他们的生产的质量,准确性和产量,可以节省大量的成本,并生产出大量的产品。
优化生产和定制
大数据也被用来优化生产计划。企业可以分析客户的信息,供应商和机器的可用性(以及相应的成本限制),以提高他们的收益率。同样,他们也可以更准确地预测产品的需求和生产,并比以前更快地为客户提供服务和支持。
大数据可以使制造商更容易地销售更多的定制产品,或为订购的产品制定出更加有利可图的价格。虽然这些类型的产品通常比“现成的”项目提供更高的毛利率,但如果生产过程没有正确的计划,其涉及的成本可能会激增。
然而,通过使用先进的分析技术,企业可以更容易地解释他们的定制或按需的产品配置,他们可以在生产计划的基础上,让风险对生产机器,工作人员和空间的可用性影响最小。
在金融领域,大数据正在改变银行和其他机构如何做的事情,如产生客户智能,降低风险,并满足各种监管目标。
了解客户
许多银行现在使用大数据,以提高他们对客户的理解,以及对他们的客户进行定位,并将产品销售给消费者,无论是在零售银行,贷款,信用卡和财富管理等领域。基金经理和其他组织也可能使用大数据继续增加代理和客户互动。
许多金融机构也在使用大数据来进行预测分析,以帮助他们满足不断变化的监管要求,并规避日常运营中的风险。对于大量信息的跟踪和研究将有可能越来越多地应用在欺诈和风险部门,组织可以加快实时分析和预警,并改善他们的财务模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13